题目内容

12.如图,在△ABC中,三角形的外角∠DAC和∠ACF的平分线交于点E,若∠AEC=70°,则∠B=40°.

分析 先根据三角形内角和定理求出∠EAC+∠ACE的度数,再根据AE、CE分别是∠DAC与∠ACF的角平分线得出∠DAC+∠ACF的度数,进而得出∠BAC+∠ACB的度数,根据三角形内角和定理即可得出结论

解答 解:∵△ACE中,∠AEC=70°,
∴∠EAC+∠ACE=180°-70°=110°,
∵AE、CE分别是∠DAC与∠ACF的角平分线,
∴∠DAC+∠ACF=2(∠EAC+∠ACE)=220°,
∴∠BAC+∠ACB=360°-220°=140°,
∴∠B=180°-140°=40°.
故答案为:40°.

点评 本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网