题目内容

12.如图,已知D是△ABC的边BC上的一点,CD=AB,∠BDA=∠BAD,AE是△ABD的中线.
(1)若∠B=60°,求∠C的值;
(2)求证:AD是∠EAC的平分线.

分析 (1)根据已知条件得到∠BAD=∠BDA=60°,于是得到AB=AD,等量代换得到CD=AD,根据等腰三角形的性质得到∠DAC=∠C,推出∠BDA=∠DAC+∠C=2∠C,即可得到结论;
(2)证明:延长AE到M,使EM=AE,连接DM,推出△ABE≌△MDE,根据全等三角形的性质得到∠B=∠MDE,AB=DM,根据全等三角形的判定定理得到△MAD≌△CAD,根据全等三角形的性质得到∠MAD=∠CAD于是得到结论.

解答 (1)解:∵∠B=60°,∠BDA=∠BAD,
∴∠BAD=∠BDA=60°,
∴AB=AD,
∵CD=AB,
∴CD=AD,
∴∠DAC=∠C,
∴∠BDA=∠DAC+∠C=2∠C,
∵∠BAD=60°,
∴∠C=30°;

(2)证明:延长AE到M,使EM=AE,连接DM,
在△ABE和△MDE中,
$\left\{\begin{array}{l}{EM=AE}\\{∠AEB=∠MED}\\{BE=DE}\end{array}\right.$,
∴△ABE≌△MDE,
∴∠B=∠MDE,AB=DM,
∵∠ADC=∠B+∠BAD=∠MDE+∠BDA=∠ADM,
在△MAD与△CAD,
$\left\{\begin{array}{l}{DM=CD}\\{∠ADM=∠ADC}\\{AD=AD}\end{array}\right.$,
∴△MAD≌△CAD,
∴∠MAD=∠CAD,
∴AD是∠EAC的平分线.

点评 本题考查了全等三角形的判定和性质,等腰三角形的性质,三角形中线的定义,正确的作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网