题目内容
2.以下列各组数为三角形的边长,能构成直角三角形的是( )| A. | 8,12,17 | B. | 1,2,3 | C. | 6,8,10 | D. | 5,12,9 |
分析 求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
解答 解:A、82+122≠172,不能构成直角三角形,故选项错误;
B、12+22≠32,不能构成直角三角形,故选项错误;
C、62+82=102,能构成直角三角形,故选项正确;
D、52+92≠122,不能构成直角三角形,故选项错误.
故选C.
点评 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
练习册系列答案
相关题目
7.为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手:
(1)一条直线把平面分成2部分;
(2)两条直线最多可把平面分成4部分;
(3)三条直线最多可把平面分成7部分…;
把上述探究的结果进行整理,列表分析:
(1)当直线条数为5时,把平面最多分成16部分,写成和的形式1+1+2+3+4+5;
(2)当直线为n条时,把平面最多分成$\frac{{n}^{2}+n+2}{2}$部分.
(1)一条直线把平面分成2部分;
(2)两条直线最多可把平面分成4部分;
(3)三条直线最多可把平面分成7部分…;
把上述探究的结果进行整理,列表分析:
| 直线条数 | 把平面分成部分数 | 写成和形式 |
| 1 | 2 | 1+1 |
| 2 | 4 | 1+1+2 |
| 3 | 7 | 1+1+2+3 |
| 4 | 11 | 1+1+2+3+4 |
| … | … | … |
(2)当直线为n条时,把平面最多分成$\frac{{n}^{2}+n+2}{2}$部分.