题目内容
如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+
=0,过C作CB⊥x轴于B.
![]()
(1)求三角形ABC的面积;
(2)如图②,若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,求∠AED的度数;
(3)在y轴上是否存在点P,使得三角形ACP和三角形ABC的面积相等?若存在,求出P点的坐标;若不存在,请说明理由.
(1)4;(2) 45°;(3) P点的坐标为(0,-1)或(0,3). 【解析】试题分析:(1)根据非负数的性质得a+2=0,b-2=0,解得a=-2,b=2,则A(-2,0),C(2,2),B(2,0),然后根据三角形面积公式计算S△ABC; (2)作EM∥AC,如图②,则AC∥EM∥BD,根据平行线的性质得∠CAE=∠AEM,∠BDE=∠DEM,则∠AED=∠CAE+∠BDE,而...
练习册系列答案
相关题目