题目内容
12.化简$\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}$+$\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}$的结果是$\sqrt{2}$.分析 先利用完全平方公式化简复合二次根式得到$\sqrt{2+\sqrt{3}}$=$\frac{\sqrt{3}+1}{\sqrt{2}}$,$\sqrt{2-\sqrt{3}}$=$\frac{\sqrt{3}-1}{2}$,则原式=$\frac{\sqrt{2}(2+\sqrt{3})}{3+\sqrt{3}}$+$\frac{\sqrt{2}(2-\sqrt{3})}{3-\sqrt{3}}$,然后分母有理化快乐.
解答 解:∵$\sqrt{2+\sqrt{3}}$=$\sqrt{\frac{4+2\sqrt{3}}{2}}$=$\sqrt{\frac{(\sqrt{3}+1)^{2}}{2}}$=$\frac{\sqrt{3}+1}{\sqrt{2}}$,$\sqrt{2-\sqrt{3}}$=$\frac{\sqrt{3}-1}{2}$,
∴原式=$\frac{2+\sqrt{3}}{\sqrt{2}+\frac{\sqrt{3}+1}{\sqrt{2}}}$+$\frac{2-\sqrt{3}}{\sqrt{2}-\frac{\sqrt{3}-1}{\sqrt{2}}}$
=$\frac{\sqrt{2}(2+\sqrt{3})}{3+\sqrt{3}}$+$\frac{\sqrt{2}(2-\sqrt{3})}{3-\sqrt{3}}$
=$\sqrt{2}$[$\frac{(2+\sqrt{3})(3-\sqrt{3})}{6}$+$\frac{(2-\sqrt{3})(3+\sqrt{3})}{6}$]
=$\sqrt{2}$•$\frac{3+\sqrt{3}+3-\sqrt{3}}{6}$
=$\sqrt{2}$.
故答案为$\sqrt{2}$.
点评 本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.
| A. | 120° | B. | 55° | C. | 60° | D. | 125° |
| A. | $\sqrt{4}$=±2 | B. | $±\sqrt{9}$=3 | C. | $\sqrt{(-3)^{2}}$=-3 | D. | $\root{3}{-27}$=-3 |
| A. | 一组对角相等 | B. | 对角线互相平分 | ||
| C. | 一组对边平行,另一组对边相等 | D. | 对角线互相垂直 |
| A. | a+2b | B. | b+2a | C. | 4a+6b | D. | 6a+4b |