ÌâÄ¿ÄÚÈÝ
£¨1£©Çóa¡¢cµÄÖµ£®
£¨2£©ÈôQΪÏß¶ÎOBÉÏÒ»µã£¬ÇÒP¡¢QÁ½µãµÄ×Ý×ø±ê¶¼Îª5£¬ÇóÏß¶ÎPQµÄ³¤£®
£¨3£©ÈôQΪÏß¶ÎOB»òÏß¶ÎABÉϵÄÒ»µã£¬PQ¡ÍxÖᣮÉèP¡¢QÁ½µãÖ®¼äµÄ¾àÀëΪd£¨d£¾0£©£¬µãQµÄºá×ø±êΪm£¬ÇódËæmµÄÔö´ó¶ø¼õСʱmµÄȡֵ·¶Î§£®
£¨4£©Èômin{y1£¬y2£¬y3}±íʾy1£¬y2£¬y3Èý¸öº¯ÊýÖеÄ×îСֵ£¬Ôòº¯Êýy=min{-2x+42£¬x£¬ax2-2x+c}µÄ×î´óֵΪ
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©°ÑµãCºÍµãDµÄºá×ø±ê16ºÍ4·Ö±ð´úÈ뺯Êý¿ÉµÃC£¨16£¬10£©£¬D£¨4£¬4£©£¬ÔÙ¸ù¾Ý´ý¶¨ÏµÊý·¨¿ÉµÃa¡¢cµÄÖµ£»
£¨2£©ÏÈÇó³öµãQµÄ×ø±ê£¬µãPµÄ×ø±ê£¬ÔÙ·ÖÁ½ÖÖÇé¿ö£º¢Ùµ±µãPÔÚµãQ×ó²àʱ£»¢Úµ±µãPÔÚµãQÓÒ²àʱ£¬¸ù¾ÝÁ½µãÖ®¼äµÄ¾àÀ빫ʽ¿ÉµÃÏß¶ÎPQµÄ³¤Îª2
-3»ò2
+3£»
£¨3£©¹Û²ìͼÏó¿ÉÖª£¬µ±0¡Üm£¼4»ò14¡Üm£¼16ʱ£¬dËæmµÄÔö´ó¶ø¼õС£¬µ±12¡Üm¡Ü14ʱ£¬dËæmµÄÔö´ó¶ø¼õС£¬ÒÀ´Ë¼´¿ÉÇó½â£»
£¨4£©ÕÒµ½Á½¸öº¯Êý½»µãµÄ×Ý×ø±ê£¬µÃµ½ÆäÖÐ×î´óµÄyÖµ¼´ÎªËùÇó£®
£¨2£©ÏÈÇó³öµãQµÄ×ø±ê£¬µãPµÄ×ø±ê£¬ÔÙ·ÖÁ½ÖÖÇé¿ö£º¢Ùµ±µãPÔÚµãQ×ó²àʱ£»¢Úµ±µãPÔÚµãQÓÒ²àʱ£¬¸ù¾ÝÁ½µãÖ®¼äµÄ¾àÀ빫ʽ¿ÉµÃÏß¶ÎPQµÄ³¤Îª2
| 6 |
| 6 |
£¨3£©¹Û²ìͼÏó¿ÉÖª£¬µ±0¡Üm£¼4»ò14¡Üm£¼16ʱ£¬dËæmµÄÔö´ó¶ø¼õС£¬µ±12¡Üm¡Ü14ʱ£¬dËæmµÄÔö´ó¶ø¼õС£¬ÒÀ´Ë¼´¿ÉÇó½â£»
£¨4£©ÕÒµ½Á½¸öº¯Êý½»µãµÄ×Ý×ø±ê£¬µÃµ½ÆäÖÐ×î´óµÄyÖµ¼´ÎªËùÇó£®
½â´ð£º
½â£º£¨1£©¡ßÔÚy=-2x+42ÖУ¬µ±x=16ʱ£¬y=10£¬
ÔÚy=xÖУ¬µ±x=4ʱ£¬y=4£»
¡àC£¨16£¬10£©£¬D£¨4£¬4£©
¡ßÅ×ÎïÏßy=ax2-2x+c¾¹ýµãC¡¢D£¬
¡à
£¬
½âµÃ
¡àaµÄֵΪ
£¬cµÄֵΪ10£»
£¨2£©ÔÚy=xÖУ¬µ±y=5ʱ£¬x=5£¬
¡àµãQµÄºá×ø±êΪ5
ÓÉ£¨1£©Öª£¬Å×ÎïÏߵĽâÎöʽΪy=
x2-2x+10£¬
µ±y=5ʱ£¬
x2-2x+10=5£¬½âµÃx=8¡À2
¡àµãPµÄºá×ø±êΪ8¡À2
£®
¢Ùµ±µãPÔÚµãQ×ó²àʱ£¬Ïß¶ÎPQµÄ³¤Îª5-£¨8-2
£©=2
-3£¬
¢Úµ±µãPÔÚµãQÓÒ²àʱ£¬Ïß¶ÎPQµÄ³¤Îª£¨8+2
£©-5=2
+3£¬
¡àÏß¶ÎPQµÄ³¤Îª2
-3»ò2
+3£»
£¨3£©Áî-2x+42=x£¬
½âµÃx=14£¬¼´µãBµÄºá×ø±êΪ14
¹Û²ìͼÏó¿ÉÖª£¬µ±0¡Üm£¼4»ò14¡Üm£¼16ʱ£¬dËæmµÄÔö´ó¶ø¼õС£¬
µ±4£¼m¡Ü14ʱ£¬d=x-£¨
x2-2x+10£©=-
x2+3x-10=-
£¨x-12£©2+8
Óɶþ´Îº¯ÊýͼÏóµÄÐÔÖÊ¿ÉÖª£¬µ±12¡Üm¡Ü14ʱ£¬dËæmµÄÔö´ó¶ø¼õС£¬
×ÛÉÏËùÊö£¬µ±0¡Üm£¼4»ò12¡Üm£¼16ʱ£¬dËæmµÄÔö´ó¶ø¼õС£»
£¨4£©¡ßC£¨16£¬10£©£¬
¡àº¯Êýy=min{-2x+42£¬x£¬ax2-2x+c}µÄ×î´óֵΪ10£®
¹Ê´ð°¸Îª£º10£®
ÔÚy=xÖУ¬µ±x=4ʱ£¬y=4£»
¡àC£¨16£¬10£©£¬D£¨4£¬4£©
¡ßÅ×ÎïÏßy=ax2-2x+c¾¹ýµãC¡¢D£¬
¡à
|
½âµÃ
|
¡àaµÄֵΪ
| 1 |
| 8 |
£¨2£©ÔÚy=xÖУ¬µ±y=5ʱ£¬x=5£¬
¡àµãQµÄºá×ø±êΪ5
ÓÉ£¨1£©Öª£¬Å×ÎïÏߵĽâÎöʽΪy=
| 1 |
| 8 |
µ±y=5ʱ£¬
| 1 |
| 8 |
| 6 |
¡àµãPµÄºá×ø±êΪ8¡À2
| 6 |
¢Ùµ±µãPÔÚµãQ×ó²àʱ£¬Ïß¶ÎPQµÄ³¤Îª5-£¨8-2
| 6 |
| 6 |
¢Úµ±µãPÔÚµãQÓÒ²àʱ£¬Ïß¶ÎPQµÄ³¤Îª£¨8+2
| 6 |
| 6 |
¡àÏß¶ÎPQµÄ³¤Îª2
| 6 |
| 6 |
£¨3£©Áî-2x+42=x£¬
½âµÃx=14£¬¼´µãBµÄºá×ø±êΪ14
¹Û²ìͼÏó¿ÉÖª£¬µ±0¡Üm£¼4»ò14¡Üm£¼16ʱ£¬dËæmµÄÔö´ó¶ø¼õС£¬
µ±4£¼m¡Ü14ʱ£¬d=x-£¨
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
Óɶþ´Îº¯ÊýͼÏóµÄÐÔÖÊ¿ÉÖª£¬µ±12¡Üm¡Ü14ʱ£¬dËæmµÄÔö´ó¶ø¼õС£¬
×ÛÉÏËùÊö£¬µ±0¡Üm£¼4»ò12¡Üm£¼16ʱ£¬dËæmµÄÔö´ó¶ø¼õС£»
£¨4£©¡ßC£¨16£¬10£©£¬
¡àº¯Êýy=min{-2x+42£¬x£¬ax2-2x+c}µÄ×î´óֵΪ10£®
¹Ê´ð°¸Îª£º10£®
µãÆÀ£º¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÌâ£¬Éæ¼°µÄ֪ʶµãÓУº´ý¶¨ÏµÊý·¨ÇóÅ×ÎïÏß½âÎöʽ£¬·ÖÀà˼ÏëµÄÓ¦Óã¬Á½µãÖ®¼äµÄ¾àÀ빫ʽ£¬Ò»´Îº¯ÊýºÍ¶þ´Îº¯ÊýµÄÔö¼õÐÔ£¬º¯Êý×îÖµÎÊÌ⣬×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨µÄÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÁÐͼÐÎÖУ¬²»ÊÇÖá¶Ô³ÆÍ¼ÐεÄÊÇ£¨¡¡¡¡£©
| A¡¢ |
| B¡¢ |
| C¡¢ |
| D¡¢ |