题目内容
“倩影”女性服装商店平时不打折,为迎接“三八”妇女节,商店在节日期间举行促销,促销期间规定:商店内所有商品按标价的80%出售.同时,当顾客在该商店消费一定金额后,按如下方案获得相应金额的抵用券,与便下次到该商店购物抵用现金.
根据上述促销方法,顾客在商店内购物可以获得双重优惠.例如,购买标价为600元的商品,则消费金额为600×80%=480 元,获得的优惠额为600×(1-80%)+80=200元.设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价.
(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到
的优惠率?
| 消费金额a(元)范围 | 200≤a<400 | 400≤a<500 | 500≤a<700 | 700≤a<900 | … |
| 获得抵用券的金额(元) | 30 | 80 | 120 | 130 | … |
(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到
| 1 |
| 3 |
考点:分式方程的应用
专题:
分析:(1)先求出购买商品的优惠额,然后根据题目所给的优惠率公式求出优惠率;
(2)设购买标价为x元时,可以得到
的优惠率,根据x的不同取值,分情况求出适合的x的值.
(2)设购买标价为x元时,可以得到
| 1 |
| 3 |
解答:解:(1)优惠率=
=33%;
(2)设购买标价为x元时,可以得到
的优惠率,
∵500≤x<800,
∴当500≤x<625时,
由题意得,
=
,
解得:x=600,
当625≤x<800时,
由题意得,
=
,
解得:x=900,
∵900>800,
∴该情况不符合题意,
答:顾客购买标价为600元的商品,可以得到
的优惠率.
| 1000×(1-80%)+130 |
| 1000 |
(2)设购买标价为x元时,可以得到
| 1 |
| 3 |
∵500≤x<800,
∴当500≤x<625时,
由题意得,
| 0.2x+80 |
| x |
| 1 |
| 3 |
解得:x=600,
当625≤x<800时,
由题意得,
| 0.2x+120 |
| x |
| 1 |
| 3 |
解得:x=900,
∵900>800,
∴该情况不符合题意,
答:顾客购买标价为600元的商品,可以得到
| 1 |
| 3 |
点评:本题考查了分式方程的应用,在解答的过程当中充分体现了应用题要仔细审题的特点,同时分类讨论的思想在问题解答过程中也得到了淋漓尽致的体现,属中档题.
练习册系列答案
相关题目
在平面直角坐标系中,点P(-1,m2+1)一定在( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |