题目内容
20.分别用代入法和加减消元法解方程组.(1)$\left\{\begin{array}{l}{x+y=1}\\{2x+y=3}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x-3y=-5}\\{3x+2y=12}\end{array}\right.$.
分析 (1)由①得,y=1-x③,把③代入②求出x,把x的值代入③求出y;②-①消去y求出x,把x的值代入①求出y即可;
(2)由①得,y=$\frac{2x+5}{3}$③,把③代入②求出x,把x的值代入③求出y;①×2+②×3消去y求出x,把x的值代入①求出y即可.
解答 解:(1)$\left\{\begin{array}{l}{x+y=1①}\\{2x+y=3②}\end{array}\right.$
代入法:由①得,y=1-x③,
把③代入②得,x=2,
把x=2代入③得,y=-1,
所以方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$
加减法:②-①得,x=2,
把x=2代入①得,y=-1,
所以方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x-3y=-5①}\\{3x+2y=12②}\end{array}\right.$
代入法:由①得,y=$\frac{2x+5}{3}$③,
把③代入②得,x=2,
把x=2代入③得,y=3,
所以方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$
加减法:;①×2+②×3得,x=2,
把x=2代入①得,y=3,
所以方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$
点评 本题考查的是二元一次方程组的解法,掌握代入消元法和加减消元法解方程组的一般步骤是解题的关键.
练习册系列答案
相关题目
8.设$\sqrt{-(a-2)^{2}}$有意义,则a为( )
| A. | a>2 | B. | a≤2 | C. | a≥2 | D. | a=2 |
5.下列运算正确的是( )
| A. | a3+a3=a6 | B. | a3•a3=a9 | C. | (a+b)2=a2+b2 | D. | (a+b)(a-b)=a2-b2 |