ÌâÄ¿ÄÚÈÝ

4£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãOÎª×ø±êÔ­µã£¬Å×ÎïÏßy=ax2+6ax-4ÓëxÖáµÄ¸º°ëÖáÏཻÓÚµãA£¬ÓëxÖáµÄÕý°ëÖáÏཻÓÚµãB£¬ÓëyÖáµÄ¸º°ëÖáÏཻÓÚµãC£¬ÇÒAB=10£¬Ò»´Îº¯Êýy=x+bÓëÅ×ÎïÏßÏཻÓÚµãEºÍµãF£¨µãEÔÚµãF×ó±ß£©£¬ÓëÅ×ÎïÏߵĶԳÆÖáÏཻÓÚµãG£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãD£¨n£¬n+2£©ÊÇxÖáÏ·½Å×ÎïÏßÉÏÒ»µã£¬Á¬½ÓDGºÍDE£¬µ±b=8ʱ£¬Çó¡ÏEDGµÄ¶ÈÊý£»
£¨3£©µ±bΪºÎֵʱ£¬ÔÚÅ×ÎïÏßÉÏÓÐÇÒÖ»ÓÐÁ½¸öµãP£¬Ê¹¡÷EPGÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬Á¬½ÓCF£¬²¢Çó´Ëʱ¡ÏEFCµÄÕýÇÐÖµ£®

·ÖÎö £¨1£©¸ù¾ÝAB=10¿ÉµÃ³öBÓëAµÄºá×ø±êÖ®²îΪ10£¬ÓÉÅ×ÎïÏߵĽâÎöʽ¿ÉËã³ö¶Ô³ÆÖáΪ-3£¬Ò²¾ÍµÃ³öAÓëBµÄºá×ø±êÖ®ºÍΪ-6£¬´Ó¶øËã³öA¡¢BÁ½µã×ø±ê£¬½âÎöʽҲ¾Í×ÔȻȷ¶¨ÁË£»
£¨2£©ÏÈÇó³öD¡¢G×ø±ê£¬¹ýµãA×÷AH¡ÍDGÓÚH£¬Á¬½ÓAD£®£¬Çó³öAH£¬DH£¬¸ù¾Ýtan¡ÏADG=$\frac{AH}{DH}$£¬¼´¿É½â¾öÎÊÌ⣮
£¨3£©Èçͼ2ÖУ¬ÉèµãE¹ØÓÚ¶Ô³ÆÖáµÄ¶Ô³ÆµãΪP¡ä£¬¸ù¾Ý¶Ô³ÆÐÔ¿ÉÖª¡÷EGP¡äÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬µ±EÊǵÈÑüÖ±½ÇÈý½ÇÐΡ÷EPGµÄÖ±½Ç¶¥µãʱ£¬ÔÚÅ×ÎïÏßÉÏÓÐÇÒÖ»ÓÐÁ½¸öµãP£¬Ê¹¡÷EPGÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬´ËʱµãPÖ»ÄÜÊÇÅ×ÎïÏß¶¥µã£¬Çó³öµãE¡¢F×ø±ê£¬×÷CH¡ÍAFÓÚH£¬Çó³öÖ±ÏßCH½âÎöʽ£¬ÀûÓ÷½³Ì×éÇó³öµãH×ø±ê£¬Çó³öFH£¬CH¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©ÉèA¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x1£¬0£©£¬£¨x2£¬0£©£¬
¡ßAB=10£¬
¡àx2-x1=10£¬
¡ßÅ×ÎïÏß½âÎöʽΪy=ax2+6ax-4£¬
¡àÅ×ÎïÏߵĶԳÆÖáΪx=-$\frac{6a}{2a}$=-3£¬
¼´x1+x2=-6£¬
¡àx1=-8£¬x2=2£¬
¼´µãA£¨-8£¬0£©£¬µãB£¨2£¬0£©£®
½«µãB£¨2£¬0£©´úÈëÅ×ÎïÏß½âÎöʽ£¬µÃ
0=4a+12a-4£¬½âµÃ£ºa=$\frac{1}{4}$£®
¡àÅ×ÎïÏߵĽâÎöʽΪy=$\frac{1}{4}$x2+$\frac{3}{2}$x-4£®
£¨2£©ÒÀÕÕÌâÒâ»­³öͼÐΣ¬Èçͼ1Ëùʾ£®

µ±b=8ʱ£¬Ò»´Îº¯Êý½âÎöʽΪy=x+8£¬
Áîy=0£¬ÔòÓÐx+8=0£¬½âµÃ£ºx=-8£¬
´ËʱµãEÓëµãAÖØºÏ£¬×ø±êΪ£¨-8£¬0£©£»
Áîx=-3£¬Ôòy=-3+8=5£¬
¼´Gµã×ø±êΪ£¨-3£¬5£©£®
¡ßµãD£¨n£¬n+2£©ÊÇxÖáÏ·½Å×ÎïÏßÉÏÒ»µã£¬
¡àn+2=$\frac{1}{4}{n}^{2}$+$\frac{3}{2}$n-4£¬ÇÒn+2£¼0£¬
½âµÃ£ºn=-6£¬»òn=4£¨ÉáÈ¥£©£¬
¡àµãDµÄ×ø±êΪ£¨-6£¬-4£©£¬
¡àÖ±ÏßDGµÄ½âÎöʽΪy=3x+14£¬
¹ýµãA×÷AH¡ÍDGÓÚH£¬Á¬½ÓAD£®
Ö±ÏßAH½âÎöʽΪy=-$\frac{1}{3}$x-$\frac{8}{3}$£¬
ÓÉ$\left\{\begin{array}{l}{y=3x+14}\\{y=-\frac{1}{3}x-\frac{8}{3}}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-5}\\{y=-1}\end{array}\right.$£¬
¡àµãH×ø±êΪ£¨-5£¬-1£©£¬
¡àAH=$\sqrt{£¨-8+5£©^{2}+{1}^{2}}$=$\sqrt{10}$£¬
DH=$\sqrt{£¨-6+5£©^{2}+£¨-4+1£©^{2}}$=$\sqrt{10}$£¬
ÔÚRT¡÷ADHÖУ¬¡ß¡ÏAHD=90¡ã£¬
¡àtan¡ÏADG=$\frac{AH}{DH}$=1£¬
¡à¡ÏADG=45¡ã£®

£¨3£©Èçͼ2ÖУ¬ÉèµãE¹ØÓÚ¶Ô³ÆÖáµÄ¶Ô³ÆµãΪP¡ä£¬¸ù¾Ý¶Ô³ÆÐÔ¿ÉÖª¡÷EGP¡äÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬

¡àµ±EÊǵÈÑüÖ±½ÇÈý½ÇÐΡ÷EPGµÄÖ±½Ç¶¥µãʱ£¬ÔÚÅ×ÎïÏßÉÏÓÐÇÒÖ»ÓÐÁ½¸öµãP£¬Ê¹¡÷EPGÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
´ËʱµãPÖ»ÄÜÊÇÅ×ÎïÏß¶¥µã£¬ÒòΪ´Ëʱ¡ÏAGP=¡ÏAPG=45¡ã£¬
¡àµãP×ø±ê£¨-3£¬-$\frac{25}{4}$£©£¬
¹ýµãP´¹Ö±GEµÄÖ±Ïß½âÎöʽΪy=-x-$\frac{37}{4}$£¬
ÓÉ$\left\{\begin{array}{l}{y=-x-\frac{37}{4}}\\{y=\frac{1}{4}{x}^{2}+\frac{3}{2}x-4}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-3}\\{y=-\frac{25}{4}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-7}\\{y=-\frac{9}{4}}\end{array}\right.$£¬
¡àµãE×ø±êΪ£¨-7£¬-$\frac{9}{4}$£©£¬´úÈëy=x+bµÃµ½b=$\frac{19}{4}$£®
µ±µãPΪµÈÑüÖ±½ÇÈý½ÇÐΡ÷EPGµÄÖ±½Ç¶¥µãʱ£¬ÓÉͼÏó¿ÉÖªµãP²»´æÔÚ£¬
¡àb=$\frac{19}{4}$ʱ£¬ÔÚÅ×ÎïÏßÉÏÓÐÇÒÖ»ÓÐÁ½¸öµãP£¬Ê¹¡÷EPGÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
×÷CH¡ÍAFÓÚH£¬ÔòÖ±ÏßCH½âÎöʽΪy=-x-4£¬Ö±ÏßEFΪy=x+$\frac{19}{4}$£¬
ÓÉ$\left\{\begin{array}{l}{y=-x-4}\\{y=x+\frac{19}{4}}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-\frac{35}{8}}\\{y=\frac{3}{8}}\end{array}\right.$£®
¡àµãH×ø±ê£¨-$\frac{35}{8}$£¬$\frac{3}{8}$£©£¬
¡àHC=$\frac{35}{8}$$\sqrt{2}$£¬
ÓÉ$\left\{\begin{array}{l}{y=x+\frac{19}{4}}\\{y=\frac{1}{4}{x}^{2}+\frac{3}{2}x-4}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=-7}\\{y=-\frac{9}{4}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=5}\\{y=\frac{39}{4}}\end{array}\right.$£¬
¡àµãF×ø±ê£¨5£¬$\frac{39}{4}$£©£¬
¡àFH=$\frac{75}{8}$$\sqrt{2}$£¬
¡àtan¡ÏEFC=$\frac{CH}{FH}$=$\frac{7}{15}$£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯Êý¡¢Èñ½ÇÈý½Çº¯Êý¡¢´ý¶¨ÏµÊý·¨µÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎÕ´ý¶¨ÏµÊý·¨£¬Ñ§»á¹¹½¨º¯Êý£¬ÀûÓ÷½³Ì×éÇóÁ½¸öº¯Êý½»µã×ø±ê£¬Ñ§»á³£Óø¨ÖúÏßµÄÌí¼Ó·½·¨£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø