题目内容

17.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处,蚂蚁爬行的最短路程是100cm.

分析 蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短的途径.

解答 解:第一种情况:如图1,把我们所看到的前面和上面组成一个平面,

则这个长方形的长和宽分别是90cm和50cm,
则所走的最短线段AB=$\sqrt{5{0}^{2}+9{0}^{2}}$=10$\sqrt{106}$cm;
第二种情况:如图2,把我们看到的左面与上面组成一个长方形,

则这个长方形的长和宽分别是110cm和30cm,
所以走的最短线段AB=$\sqrt{11{0}^{2}+3{0}^{2}}$=10$\sqrt{130}$cm;
第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,

则这个长方形的长和宽分别是80cm和60cm,
所以走的最短线段AB=$\sqrt{8{0}^{2}+6{0}^{2}}$=100cm;
三种情况比较而言,第三种情况最短.
故答案为:100cm.

点评 本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网