题目内容

已知如图,是腰长为4的等腰直角三角形ABC,要求在其内部作出一个半圆,直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,则该半圆的半径是
 
(结果保留根号).
考点:直线与圆的位置关系
专题:分类讨论
分析:分两种情况:①是直径在斜边上;②是直径在腰上分别求解半圆半径的长即可.
解答:解:①∵半圆的直径在△ABC的斜边上,且半圆的弧与△ABC的两腰相切,切点为D、E,
如图1,连接OD,OA,

∵AB与⊙O相切,
∴OD⊥AB,
∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,
∴AO⊥BC,
∴OD∥AC,
∵O为BC的中点,
∴OD=
1
2
AC=2.
②∵半圆的直径在△ABC的腰上,且半圆的弧与△ABC的斜边相切,切点为D,
如图2,连接OD,设半圆的半径为r,

∴OB=4-r,
∵在等腰直角三角形ABC中,AB=AC=4,
∴∠B=45°,
∴△OBD是等腰直角三角形,
∴OD=BD=r,
∴2r2=(4-r)2,解得r=-4+4
2
,r=-4-4
2
(舍去),
故答案为:2或-4+4
2
点评:本题主要考查了切线的性质、切线长定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网