题目内容
15.| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
分析 先求出AB两点间的距离,根据距离的定义找出符合条件的点,再根据概率公式即可得出答案.
解答 解:∵AB间距离为6,点C到表示1的点的距离不大于2的点是-1到3之间的点,满足条件的点组成的线段的长是4.
∴点C到表示1的距离不大于2的概率为$\frac{4}{6}$=$\frac{2}{3}$;
故选D.
点评 本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
练习册系列答案
相关题目
6.
某中学食堂提供了四种价格的午餐供学生选择,这四种价格分别是:A.3元,B.4元,C.5元,D.6元.为了解学生对四种午餐的购买情况,学校随机抽样调查了甲、乙两班学生某天购买四种午餐的情况,依据统计数据制成如下的统计图表:
甲、乙两班学生购买四种午餐情况统计表
(1)乙班有学生50人;
(2)从这次接受调查的学生中随机抽查一人,恰好是购买C种午餐的学生的概率是41%;
(3)请从平均数、中位数和众数的角度分析甲、乙两个班学生购买的午餐价格高低情况.
甲、乙两班学生购买四种午餐情况统计表
| A | B | C | D | |
| 甲 | 6 | 22 | 16 | 6 |
| 乙 | ? | 13 | 25 | 3 |
(2)从这次接受调查的学生中随机抽查一人,恰好是购买C种午餐的学生的概率是41%;
(3)请从平均数、中位数和众数的角度分析甲、乙两个班学生购买的午餐价格高低情况.
10.在直角△ABC,∠C=90°,sinA=$\frac{3}{5}$,BC=8,则AB的长为( )
| A. | 10 | B. | $\frac{40}{3}$ | C. | $\frac{24}{5}$ | D. | 12 |
20.若火箭点火发射之后5秒记为+5秒,那么火箭点火发射之前10秒应记为( )秒.
| A. | +10 | B. | -10 | C. | $+\frac{1}{10}$ | D. | $-\frac{1}{10}$ |
7.
如图,在△ABC中,点D、E分别在BC、AB边上,DF∥AB,交AC边于点H,EF∥BC,交AC边于点G,则下列结论中正确的是( )
| A. | $\frac{AE}{BE}=\frac{AG}{CG}$ | B. | $\frac{EG}{GF}=\frac{AG}{CH}$ | C. | $\frac{CH}{CF}=\frac{CD}{BD}$ | D. | $\frac{EF}{CD}=\frac{AG}{CH}$ |
4.
如图,在圆心角为90°的扇形OAB中,半径OA=4cm,C为弧AB的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为( )cm2.
| A. | 4π-2$\sqrt{2}$-2 | B. | 4π-2 | C. | 2π+2$\sqrt{2}$-2 | D. | 2π+2$\sqrt{2}$ |