题目内容

如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,点P在直线l3上,
(1)若点P在C,D两点之间运动,∠PAC,∠APB,∠PBD之间的关系是否发生变化,若不变请求出它们之间的关系;
(2)若点P在C,D两点的外侧运动(点P与点C,D不重合),则∠PAC,∠APB,
∠PBD之间的关系又如何?
考点:平行线的性质
专题:
分析:(1)当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD.
(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等与三角形外角的性质,即可求得:∠PBD=∠PAC+∠APB.
解答:解:(1)如图①,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.
理由如下:
过点P作PE∥l1
∵l1∥l2
∴PE∥l2∥l1
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;

(2)如图②,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.
理由如下:
∵l1∥l2
∴∠PEC=∠PBD,
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.
如图③,当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.
理由如下:
∵l1∥l2
∴∠PED=∠PAC,
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
点评:本题主要考查平行线的性质与三角形外角的性质.此题难度适中,解题的关键是掌握:两直线平行,内错角相等与两直线平行,同位角相等,注意辅助线的作法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网