题目内容

1.如图,点A,B,C在⊙O上,⊙O的半径为9,弧AB的长为2π,则∠ACB的大小是(  )
A.20°B.45°C.60°D.40°

分析 连接AO、BO,然后根据弧AB的长为2π,求出圆心角∠AOB的度数,然后根据圆周角定理求出∠ACB的度数.

解答 解:连接AO、BO,
∵弧AB的长为2π,
∴2π=$\frac{nπ×9}{180}$,
解得:n=40°,
则∠ACB=$\frac{1}{2}$×40°=20°.
故选A.

点评 本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=$\frac{nπr}{180}$.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网