题目内容
13.下列计算:①(x+3)(x-3)=x2+(-3)2;②(a-b)2=a2-b2;③(-x-y)2=x2+2xy+y2;④(2x-y)(y-2x)=4x2-y2.其中错误的个数有( )| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
分析 原式各项利用平方差公式,完全平方公式化简得到结果,即可作出判断.
解答 解:①(x+3)(x-3)=x2-9,错误;
②(a-b)2=a2-2ab+b2,错误;
③(-x-y)2=x2+2xy+y2,正确;
④(2x-y)(y-2x)=-4x2+4xy-y2,错误,
则错误的个数是3个,
故选B
点评 此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
练习册系列答案
相关题目
3.关于x的不等式2x-a≤-1的解集x≤-1,则a的取值是( )
| A. | 0 | B. | -3 | C. | -2 | D. | -1 |
8.下列计算错误的是( )
| A. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ | B. | $\sqrt{6}$÷$\sqrt{2}$=$\sqrt{3}$ | C. | (-$\sqrt{3}$)2=3 | D. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ |
18.
为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.
根据所给图表信息,解决下列问题:
(1)m=13,解释m的实际意义:7:00时自行车的存量;
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知10:00-11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.
| 时段 | x | 还车数 | 借车数 | 存量y |
| 7:00-8:00 | 1 | 7 | 5 | 15 |
| 8:00-9:00 | 2 | 8 | 7 | n |
| … | … | … | … | … |
(1)m=13,解释m的实际意义:7:00时自行车的存量;
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知10:00-11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.