ÌâÄ¿ÄÚÈÝ
4£®Ò»Ì죬СÃ÷ÔÚÍæÖ½Æ¬Æ´Í¼ÓÎϷʱ£¬·¢ÏÖÀûÓÃͼ¢ÙÖеÄÈýÖÖ²ÄÁϸ÷Èô¸É£¬¿ÉÒÔÆ´³öһЩ³¤·½ÐÎÀ´½âÊÍijЩµÈʽ£¬±ÈÈçͼ¢Ú¿ÉÒÔ½âÊÍΪµÈʽ£º£¨a+2b£©£¨a+b£©=a2+3ab+2b2£®£¨1£©Ôòͼ¢Û¿ÉÒÔ½âÊÍΪµÈʽ£º£¨2a+b£©£¨a+2b£©=2a2+5ab+2b2£®
£¨2£©ÔÚÐéÏß¿òÖÐÓÃͼ¢ÙÖеĻù±¾Í¼ÐÎÈô¸É¿é£¨Ã¿ÖÖÖÁÉÙÓÃÒ»´Î£©Æ´³ÉÒ»¸ö³¤·½ÐΣ¬Ê¹Æ´³öµÄ³¤·½ÐÎÃæ»ýΪa2+4ab+3b2£¬²¢ÇëÔÚͼÖбê³öÕâ¸ö³¤·½Ðεij¤ºÍ¿í£®
£¨3£©Èçͼ¢Ü£¬´óÕý·½Ðεı߳¤Îªm£¬Ð¡Õý·½Ðεı߳¤Îªn£¬ÈôÓÃx¡¢y±íʾËĸö³¤·½ÐεÄÁ½±ß³¤£¨x£¾y£©£¬¹Û²ìͼ°¸£¬Ö¸³öÒÔϹØÏµÊ½£º£¨a£©x-y=n£»£¨b£©xy=$\frac{{m}^{2}-{n}^{2}}{4}$£»£¨c£©x2-y2=mn£»£¨d£©x2+y2=$\frac{{m}^{2}+{n}^{2}}{2}$£®ÆäÖÐÕýÈ·µÄ¹ØÏµÊ½µÄ¸öÊýÓÐ4¸ö£®
·ÖÎö £¨1£©¿´Í¼¼´¿ÉµÃ³öËùÇóµÄʽ×Ó£»
£¨2£©»³öµÄ¾ØÐα߳¤·Ö±ðΪ£¨a+b£©ºÍ£¨a+3b£©¼´¿É£»
£¨3£©¸ù¾ÝͼÖÐÿ¸öͼÐεÄÃæ»ýÖ®¼äµÄ¹ØÏµ¼´¿ÉÅжϳöÕýÈ·µÄÓм¸¸ö£®
½â´ð ½â£º£¨1£©ÓÉ·ÖÎöÖª£ºÍ¼¢ÛËù±íʾµÄµÈʽΪ£º£¨2a+b£©£¨a+2b£©=2a2+5ab+2b2£»
¹Ê´ð°¸Îª£º£¨2a+b£©£¨a+2b£©=2a2+5ab+2b2£»
£¨2£©Ê¾ÒâͼÈçÏ£º![]()
£¨3£©£¨a£©ÕýÈ·£»£¨b£©¡ß4xy=m2-n2£¬¡àxy=$\frac{{m}^{2}-{n}^{2}}{4}$£¬ÕýÈ·£»
£¨c£©¡ßx+y=m£¬x-y=n£¬
¡àx2-y2=£¨x+y£©£¨x-y£©=mn£¬
¡àÕýÈ·£»
£¨d£©${x}^{2}+{y}^{2}=£¨x-y£©^{2}+2xy={n}^{2}-2¡Á\frac{{m}^{2}-{n}^{2}}{4}$=$\frac{{m}^{2}+{n}^{2}}{2}$£¬ÕýÈ·£»
¹ÊÕýÈ·µÄÓÐ4¸ö£¬¹Ê´ð°¸Îª£º4£®
µãÆÀ ±¾Ì⿼²éÁËÍêȫƽ·½¹«Ê½£¬ÕûʽµÄ»ìºÏÔËËãµÄÓ¦Óã¬Ö÷Òª¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦ºÍ¹Û²ìͼÐεÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
12£®ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬ÈôsinA=$\frac{2}{3}$£¬ÔòtanB=£¨¡¡¡¡£©
| A£® | $\frac{5}{3}$ | B£® | $\frac{\sqrt{5}}{3}$ | C£® | $\frac{2\sqrt{5}}{5}$ | D£® | $\frac{\sqrt{5}}{2}$ |