题目内容
12.分析 易证∠CAD=∠BCE,即可证明△CDA≌△BEC,可得CD=BE,CE=AD,根据DE=CE-CD,即可解题.
解答 解:∵∠ACB=90°,BE⊥CE于点E,AD⊥CE于点D,
∴∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,
在△CDA和△BEC中,
$\left\{\begin{array}{l}{∠CDA=∠BEC=90°}\\{∠CAD=∠BCE}\\{AC=BC}\end{array}\right.$,
∴△CDA≌△BEC(AAS),
∴CD=BE,CE=AD,
∵DE=CE-CD,
∴DE=AD-BE,
∵AD=7cm,BE=3cm,
∴DE=7cm-3cm=4cm.
点评 本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(SSS、SAS、ASA、AAS和HL)和性质(全等三角形的对应边、对应角相等)是解题的关键.
练习册系列答案
相关题目
17.-3.2与0.2的大小关系,表示正确的是( )
| A. | -3.2>0.2 | B. | -3.2<0.2 | C. | -3.2=0.2 | D. | 都不对 |
1.下列关于抛物线y=-x2-2的结论,正确的是( )
| A. | 与x轴有两个交点 | B. | 开口向上 | ||
| C. | 与y轴的交点坐标(0,2) | D. | 顶点坐标是(0,-2) |