题目内容

12.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,AD=7cm,BE=3cm,求DE的长.

分析 易证∠CAD=∠BCE,即可证明△CDA≌△BEC,可得CD=BE,CE=AD,根据DE=CE-CD,即可解题.

解答 解:∵∠ACB=90°,BE⊥CE于点E,AD⊥CE于点D,
∴∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,
在△CDA和△BEC中,
$\left\{\begin{array}{l}{∠CDA=∠BEC=90°}\\{∠CAD=∠BCE}\\{AC=BC}\end{array}\right.$,
∴△CDA≌△BEC(AAS),
∴CD=BE,CE=AD,
∵DE=CE-CD,
∴DE=AD-BE,
∵AD=7cm,BE=3cm,
∴DE=7cm-3cm=4cm.

点评 本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(SSS、SAS、ASA、AAS和HL)和性质(全等三角形的对应边、对应角相等)是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网