题目内容
19.已知x1,x2是一元二次方程x2+4x-3=0的两个实数根,求下列各式的值.(1)$\frac{{x}_{2}}{{x}_{1}}$+$\frac{{x}_{1}}{{x}_{2}}$
(2)(x1-1)(x2-1)
(3)(x1-x2)2
(4)$\frac{1}{{x}_{1}^{2}}$+$\frac{1}{{x}_{2}^{2}}$.
分析 根据根与系数的关系得x1+x2=-4,x1x2=-3,利用代数式变形分别得到$\frac{{x}_{2}}{{x}_{1}}$+$\frac{{x}_{1}}{{x}_{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$,(x1-1)(x2-1)=x1x2-(x1+x2)+1,(x1-x2)2=(x1+x2)2-4x1x2,$\frac{1}{{x}_{1}^{2}}$+$\frac{1}{{x}_{2}^{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{({x}_{1}{x}_{2})^{2}}$,然后利用整体代入的方法计算.
解答 解:根据题意得x1+x2=-4,x1x2=-3,
(1)$\frac{{x}_{2}}{{x}_{1}}$+$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{x}_{1}{x}_{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$=$\frac{(-4)^{2}-2×(-3)}{-3}$=-$\frac{22}{3}$;
(2)(x1-1)(x2-1)=x1x2-(x1+x2)+1=-3+4+1=2;
(3)(x1-x2)2=(x1+x2)2-4x1x2=(-4)2-4×(-3)=28;
(4)$\frac{1}{{x}_{1}^{2}}$+$\frac{1}{{x}_{2}^{2}}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{{x}_{1}}^{2}{{x}_{2}}^{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{({x}_{1}{x}_{2})^{2}}$=$\frac{(-4)^{2}-2×(-3)}{(-3)^{2}}$=$\frac{22}{9}$.
点评 本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.