ÌâÄ¿ÄÚÈÝ
7£®| A£® | $\frac{1}{4}$ | B£® | $\frac{3}{5}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{5}{8}$ |
·ÖÎö ¸ù¾ÝE£¬F¶¼ÔÚ·´±ÈÀýº¯ÊýµÄͼÏóÉϵóö¼ÙÉè³öE£¬FµÄ×ø±ê£¬½ø¶ø·Ö±ðµÃ³ö¡÷GEFµÄÃæ»ýS1ÒÔ¼°¡÷OEFµÄÃæ»ýS2£¬È»ºó¼´¿ÉµÃ³ö´ð°¸£®
½â´ð
½â£º¹ýµãF×÷FR¡ÍAOÓÚµãR£¬EW¡ÍBOÓÚµãW£¬
¡ß$\frac{DE}{DF}$=$\frac{1}{4}$£¬
¡à$\frac{AE}{FR}$=$\frac{1}{4}$£¬
¡ßAE•EW=FR•BF£¬
¡à$\frac{AE}{FR}$=$\frac{FB}{EW}$=$\frac{1}{4}$£¬
¡àS1=$\frac{1}{2}$£¨4x-x£©£¨4y-y£©=$\frac{9}{2}$xy£¬
ÉèEµã×ø±êΪ£º£¨x£¬4y£©£¬ÔòFµã×ø±êΪ£º£¨4x£¬y£©£¬
¡ß¡÷OEFµÄÃæ»ýΪ£ºS2=S¾ØÐÎGBOA-S1-S¡÷AEO-S¡÷FOB
=GB•OB-$\frac{9}{2}$xy-$\frac{1}{2}$AE•AO-$\frac{1}{2}$FB•BO
=4x•4y-$\frac{9}{2}$xy-$\frac{1}{2}$x•4y-$\frac{1}{2}$y•4x
=16xy-$\frac{9}{2}$xy-4xy
=$\frac{15}{2}$xy
¡à$\frac{{S}_{1}}{{S}_{2}}$=$\frac{\frac{9}{2}xy}{\frac{15}{2}xy}$=$\frac{3}{5}$£®
¹ÊÑ¡£ºB£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁË·´±ÈÀýº¯ÊýµÄ×ÛºÏÓ¦ÓÃÒÔ¼°Èý½ÇÐÎÃæ»ýÇ󷨣¬¸ù¾ÝÒÑÖª±íʾ³öE£¬FµÄµã×ø±êÊǽâÌâ¹Ø¼ü£¬ÄѶȽϴó£¬ÒªÇóͬѧÃÇÄܽ«ËùѧµÄ֪ʶÈÚ»á¹áͨ£®