题目内容

关于未知数x的方程ax2+4x-1=0只有正实数根,则a的取值范围为


  1. A.
    -4≤a≤0
  2. B.
    -4≤a<0
  3. C.
    -4<a≤0
  4. D.
    -4<a<0
A
分析:当a=0时,方程是一元一次方程,方程的根可以求出,即可作出判断;
当a≠0时,方程是一元二次方程,只有正实数根,则应满足:△≥0,x1+x2>0,x1•x2>0,建立关于a的不等式,求得a的取值范围即可.
解答:当a=0时,方程是一元一次方程,方程是4x-1=0,解得x=,是正根;
当a≠0时,方程是一元二次方程.
∵a=a,b=4,c=-1,
∴△=16+4a≥0,
x1+x2=->0,
x1•x2=->0
解得:-4≤a<0.
总之:-4≤a≤0.
故选:A
点评:注意本题分a=0与a≠0两种情况讨论是解决本题的关键.并且利用了一元二次方程若只有正实数根的条件,则应有△≥0,两根之积大于0,两根之和大于0求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网