ÌâÄ¿ÄÚÈÝ
6£®°ÑÏÂÁдúÊýʽ·Ö±ðÌîÔÚÏàÓ¦µÄÀ¨ºÅÄÚ2-ab£¬-3a2+$\frac{1}{2}$£¬-$\frac{a{b}^{2}}{4}$£¬-4$\frac{1}{2}$£¬-$\frac{1}{2}$a£¬$\frac{b}{a}$£¬-2a2+3a+1£¬$\frac{{a}^{2}+{b}^{2}}{4}$£¬¦Ða+1£¬$\frac{2a+{b}^{2}+b}{6}$£®
¢Ùµ¥Ïîʽ£º{ }£®
¢Ú¶àÏîʽ£º{ }£®
¢Û¶þ´Î¶þÏîʽ£º{ }£®
¢ÜÕûʽ£º{ }£®
·ÖÎö ¸ù¾Ýµ¥ÏîʽÊÇÊýÓë×ÖĸµÄ»ý£¬¶àÏîʽÊǼ¸¸öµ¥ÏîËÆµÄºÍ£¬¶àÏîʽÖеÄÿ¸öµ¥ÏîʽÊǶàÏîʽµÄÏµ¥ÏîʽÓë¶àÏîʽͳ³ÆÕûʽ£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£º¢Ùµ¥Ïîʽ£º{-$\frac{a{b}^{2}}{4}$£¬-4$\frac{1}{2}$£¬-$\frac{1}{2}$a}£»
¢Ú¶àÏîʽ£º{2-ab£¬-3a2+$\frac{1}{2}$£¬-2a2+3a+1£¬$\frac{{a}^{2}+{b}^{2}}{4}$£¬¦Ða+1£¬$\frac{2a+{b}^{2}+b}{6}$}
¢Û¶þ´Î¶þÏîʽ£º{2-ab£¬-3a2+$\frac{1}{2}$£¬$\frac{{a}^{2}+{b}^{2}}{4}$}£»
¢ÜÕûʽ£º{2-ab£¬-3a2+$\frac{1}{2}$£¬-$\frac{a{b}^{2}}{4}$£¬-4$\frac{1}{2}$£¬-$\frac{1}{2}$a£¬-2a2+3a+1£¬$\frac{{a}^{2}+{b}^{2}}{4}$£¬¦Ða+1£¬$\frac{2a+{b}^{2}+b}{6}$}£»
¹Ê´ð°¸Îª£º-$\frac{a{b}^{2}}{4}$£¬-4$\frac{1}{2}$£¬-$\frac{1}{2}$a£»2-ab£¬-3a2+$\frac{1}{2}$£¬-2a2+3a+1£¬$\frac{{a}^{2}+{b}^{2}}{4}$£¬¦Ða+1£¬$\frac{2a+{b}^{2}+b}{6}$£»2-ab£¬-3a2+$\frac{1}{2}$£¬$\frac{{a}^{2}+{b}^{2}}{4}$£»2-ab£¬-3a2+$\frac{1}{2}$£¬-$\frac{a{b}^{2}}{4}$£¬-4$\frac{1}{2}$£¬-$\frac{1}{2}$a£¬-2a2+3a+1£¬$\frac{{a}^{2}+{b}^{2}}{4}$£¬¦Ða+1£¬$\frac{2a+{b}^{2}+b}{6}$£®
µãÆÀ ±¾Ì⿼²éÁËÕûʽ£¬µ¥ÏîʽÊÇÊýÓë×ÖĸµÄ»ý£¬¶àÏîʽÊǼ¸¸öµ¥ÏîËÆµÄºÍ£¬¶àÏîʽÖеÄÿ¸öµ¥ÏîʽÊǶàÏîʽµÄÏµ¥ÏîʽÓë¶àÏîʽͳ³ÆÕûʽ£¬×¢Òâ·ÖĸÖк¬ÓÐ×ÖĸµÄʽ×ÓÊÇ·Öʽ£®
| A£® | ƽ·Ö»¡µÄÖ±¾¶Æ½·ÖÕâÌõ»¡Ëù¶ÔµÄÏÒ | B£® | ƽ·ÖÏÒµÄÖ±¾¶Æ½·ÖÕâÌõÏÒËù¶ÔµÄ»¡ | ||
| C£® | ´¹Ö±ÓÚÏÒµÄÖ±¾¶Æ½·ÖÕâÌõÏÒ | D£® | ÏÒµÄÖд¹Ïß¾¹ýÔ²ÐÄ |