题目内容
9.分析 根据SAS可以证明△DMF≌△BNE.从而得到MF=NE,∠DFM=∠BEN.根据等角的补角相等,可以证明∠FEN=∠EFM,则EN∥FM.根据一组对边平行且相等的四边形是平行四边形即可证明.
解答 证明:在平行四边形ABCD中,AD∥BC,
∴∠ADB=∠CBD.
在△BNE和△DMF中,$\left\{\begin{array}{l}{BN=DM}&{\;}\\{∠ADB=∠CBD}&{\;}\\{BE=DF}&{\;}\end{array}\right.$,
∴△BNE≌△DMF(SAS).
∴MF=NE,∠DFM=∠BEN.
∴EN∥FM.
∴四边形MENF是平行四边形.
点评 此题综合运用了平行四边形的性质和判定.能够根据已知条件和平行四边形的性质发现全等三角形.
练习册系列答案
相关题目
12.已知△A′B′C′是由△ABC经过平移得到的,平移前后各顶点的坐标如下表所示.
(1)观察表中各对应点坐标的变化,并填空:a=0,b=2,c=9;
(2)在平面直角坐标系中画出△A'B'C'关于y轴对称的△A″B″C″.
| △ABC | A(a,0) | B(3,0) | C(5,5) |
| △A′B′C′ | A′(4,2) | B′(7,b) | C′(c,7) |
(2)在平面直角坐标系中画出△A'B'C'关于y轴对称的△A″B″C″.