题目内容
16.解方程:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=10}\\{{x}^{2}-4xy+3{y}^{2}=0}\end{array}\right.$.
分析 由②可得(x-y)(x-3y)=0,进而得到2个方程组$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=10}\\{x-y=0}\end{array}\right.$和$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=10}\\{x-3y=0}\end{array}\right.$,再分别解2个方程组求解即可.
解答 解:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=10①}\\{{x}^{2}-4xy+3{y}^{2}=0②}\end{array}\right.$,
由②可得(x-y)(x-3y)=0,
则$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=10}\\{x-y=0}\end{array}\right.$和$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=10}\\{x-3y=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{x}_{1}=-\sqrt{5}}\\{{y}_{1}=-\sqrt{5}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=\sqrt{5}}\\{{y}_{2}=\sqrt{5}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{3}=-3}\\{{y}_{3}=-1}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{4}=3}\\{{y}_{4}=1}\end{array}\right.$.
点评 考查了高次方程,高次方程的解法思想:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.