题目内容

17.如图,在△ABC中,AB=AC,且D在BC上,DE⊥AB于E,DF⊥BC交AC于点F,若∠EDF=70°,则∠AFD的度数是(  )
A.160°B.150°C.140°D.120°

分析 由DF⊥BC有∠FDB=90°,而∠EDF=70°,根据三角形内角和定理得到∠BDE=90°-70°=20°,由DE⊥AB得到∠DEB=90°,根据三角形内角和定理得到求出∠B的度数和∠C的度数,进而求出∠CFD的度数,利用邻补角的知识求出∠AFD的度数.

解答 解:∵DF⊥BC,
∴∠FDB=90°,
而∠EDF=70°,
∴∠BDE=90°-70°=20°,
∵DE⊥AB,
∴∠DEB=90°,
∴∠B=180°-∠DEB-∠BDE=180°-90°-20°=70°,
∴∠C=∠B=70°,
∴∠CFD=90°-70°=20°,
∴∠AFD=180°-20°=160°.
故选A.

点评 本题主要考查了等腰三角形的性质以及三角形内角和的知识,解题的关键是求出∠B和∠C的度数,此题难度不大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网