题目内容

4.已知一个直角三角形的两边长分别为8和15,则第三边长是(  )
A.17B.289C.$\sqrt{161}$D.17或$\sqrt{161}$

分析 按15为所给三角形的直角边和斜边,运用勾股定理来分类讨论、解析,即可解决问题.

解答 解:若8、15均为该直角三角形的两直角边,
则第三边的长为$\sqrt{{8}^{2}+1{5}^{2}}$=17;
若15为该直角三角形的斜边,
则第三边的长=$\sqrt{1{5}^{2}-{8}^{2}}$=$\sqrt{161}$,
故选D.

点评 该题主要考查了勾股定理及其应用问题;解题的关键是运用分类讨论的数学思想按15为直角边或斜边来分类讨论,逐一解析.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网