题目内容

11.在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.
(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是MD=ME;
(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;
(3)如图3,当∠ADC=α时,求$\frac{ME}{MD}$的值.

分析 (1)先判断出△AMF≌△BME,得出AF=BE,MF=ME,进而判断出∠EBC=∠BED-∠ECB=45°=∠ECB,得出CE=BE,即可得出结论;
(2)同(1)的方法即可;
(3)同(1)的方法判断出AF=BE,MF=ME,再判断出∠ECB=∠EBC,得出CE=BE即可得出∠MDE=$\frac{α}{2}$,即可得出结论.

解答 解:(1)如图1,延长EM交AD于F,
∵BE∥DA,
∴∠FAM=∠EBM,
∵AM=BM,∠AMF=∠BME,
∴△AMF≌△BME,
∴AF=BE,MF=ME,
∵DA=DC,∠ADC=90°,
∴∠BED=∠ADC=90°,∠ACD=45°,
∵∠ACB=90°,
∴∠ECB=45°,
∴∠EBC=∠BED-∠ECB=45°=∠ECB,
∴CE=BE,
∴AF=CE,
∵DA=DC,
∴DF=DE,
∴DM⊥EF,DM平分∠ADC,
∴∠MDE=45°,
∴MD=ME,
故答案为MD=ME;

(2)MD=$\sqrt{3}$ME,理由:
如图2,延长EM交AD于F,
∵BE∥DA,
∴∠FAM=∠EBM,
∵AM=BM,∠AMF=∠BME,
∴△AMF≌△BME,
∴AF=BE,MF=ME,
∵DA=DC,∠ADC=60°,
∴∠BED=∠ADC=60°,∠ACD=60°,
∵∠ACB=90°,
∴∠ECB=30°,
∴∠EBC=∠BED-∠ECB=30°=∠ECB,
∴CE=BE,
∴AF=CE,
∵DA=DC,
∴DF=DE,
∴DM⊥EF,DM平分∠ADC,
∴∠MDE=30°,
在Rt△MDE中,tan∠MDE=$\frac{ME}{MD}=\frac{\sqrt{3}}{3}$,
∴MD=$\sqrt{3}$ME.

(3)如图3,延长EM交AD于F,
∵BE∥DA,
∴∠FAM=∠EBM,
∵AM=BM,∠AMF=∠BME,
∴△AMF≌△BME,
∴AF=BE,MF=ME,
延长BE交AC于点N,
∴∠BNC=∠DAC,
∵DA=DC,
∴∠DCA=∠DAC,
∴∠BNC=∠DCA,
∵∠ACB=90°,
∴∠ECB=∠EBC,
∴CE=BE,
∴AF=CE,
∴DF=DE,
∴DM⊥EF,DM平分∠ADC,
∵∠ADC=α,
∴∠MDE=$\frac{α}{2}$,
在Rt△MDE中,$\frac{ME}{MD}$=tan∠MDE=tan$\frac{α}{2}$.

点评 此题是相似形综合题,主要考查了全等三角形的判断和性质,等腰三角形的判断和性质,锐角三角函数,解(1)(2)的关键是判断出∠MDE=$\frac{1}{2}$∠ADC,是一道基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网