题目内容

19.有红、黄两个盒子,红盒子中装有编号分别为1、2、3、4的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.
(1)试用列表或画树形图的方法,求甲获胜的概率;
(2)请问这个游戏规则对甲、乙双方公平吗?请说明理由.

分析 (1)首先画树状图,然后根据树状图即可求得甲获胜的概率;
(2)根据树状图,求得甲、乙获胜的概率,然后比较概率,即可求得这个游戏规则对甲、乙双方是否公平.

解答 解:(1)画树状图得:

∴一共有12种等可能的结果,两球编号之和为奇数有6种情况,
∴P(甲胜)=$\frac{6}{12}=\frac{1}{2}$;
(2)公平.
∵P(乙胜)=$\frac{6}{12}=\frac{1}{2}$,
∴P(甲胜)=P(乙胜),
∴这个游戏规则对甲、乙双方公平;

点评 本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网