题目内容
16.已知两点A(7,4),B(5,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的$\frac{1}{2}$得到线段CD,则点A的对应点C的坐标为( )| A. | (2,3) | B. | (3,2) | C. | (2,1) | D. | (3,3) |
分析 根据平移变换的性质求出平移后点A的坐标,根据位似变换的性质计算即可.
解答 解:将线段AB向左平移一个单位,则点A(7,4)变为(6,4),
以原点O为位似中心,在第一象限内将其缩小为原来的$\frac{1}{2}$,
则点A的对应点C的坐标为(6×$\frac{1}{2}$,4×$\frac{1}{2}$),即(3,2),
故选:B.
点评 本题考查的是位似变换的性质和坐标与图形的关系,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
练习册系列答案
相关题目
7.
如图,把一段弯曲的公路改成直道可以缩短路段,其理由是( )
| A. | 两点确定一条直线 | B. | 线段比曲线短 | ||
| C. | 两点之间,直线最短 | D. | 两点之间,线段最短 |
1.
正方形网格中,∠AOB如图放置,则tan∠AOB的值为( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |