【题目】已知某芯片所获订单
(亿件)与生产精度
(纳米)线性相关,该芯片的合格率
与生产精度
(纳米)也线性相关,并由下表中的5组数据得到,
与
满足线性回归方程为:
.
精度 | 16 | 14 | 10 | 7 | 3 |
订单 | 7 | 9 | 12 | 14.5 | 17.5 |
合格率 | 0.99 | 0.98 | 0.95 | 0.93 |
|
(1)求变量
与
的线性回归方程
,并预测生产精度为1纳米时该芯片的订单(亿件);
(2)若某工厂生产该芯片的精度为3纳米时,每件产品的合格率为
,且各件产品是否合格相互独立.该芯片生产后成盒包装,每盒100件,每一盒产品在交付用户之前要对产品做检验,如检验出不合格品,则更换为合格品.现对一盒产品检验了10件,结果恰有一件不合格,已知每件产品的检验费用为
元,若有不合格品进入用户手中,则工厂要对每件不合格产品支付200元的赔偿费用.若不对该盒余下的产品检验,这一盒产品的检验费用与赔偿费用的和记为
,以
为决策依据,判断是否该对这盒余下的所有产品作检验?
(参考公式:
,
)
(参考数据:
;
)
【题目】根据《山东省全民健身实施计划(2016-2020年)》,到2020年乡镇(街道)普遍建有“两个一”工程,即一个全民健身活动中心或灯光篮球场、一个多功能运动场.某市把甲、乙、丙、丁四个多功能运动场全部免费为市民开放.
![]()
(1)在一次全民健身活动中,四个多功能运动场的使用场数如图,用分层抽样的方法从甲、乙、丙、丁四场馆的使用场数中依次抽取
,
,
,
共25场,在
,
,
,
中随机取两数,求这两数和
的分布列和数学期望;
(2)设四个多功能运动场一个月内各场使用次数之和为
,其相应维修费用为
元,根据统计,得到如下表的
与
数据:
| 10 | 15 | 20 | 25 | 30 | 35 | 40 |
| 2302 | 2708 | 2996 | 3219 | 3401 | 3555 | 3689 |
| 2.49 | 2.99 | 3.55 | 4.00 | 4.49 | 4.99 | 5.49 |
(i)用最小二乘法求
与
之间的回归直线方程;
(ii)
叫做运动场月惠值,根据(i)的结论,试估计这四个多功能运动场月惠值最大时
的值.
参考数据和公式:
,
,
,
,
,
.