【题目】在某校举行的航天知识竞赛中,参与竞赛文科生与理科生人数之比为
,且成绩分布在
,分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.
文科生 | 理科生 | 合计 | |
获奖 | 5 | ||
不获奖 | |||
合计 | 200 |
![]()
参考公式:
(其中
为样本容量)
随机变量
的概率分布:
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)求
的值;
(2)填写上方的
列联表,并判断能否有超过
的把握认为“获奖与学生的文、理科有关”?
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量
(吨)与相应的生产能耗
(吨标准煤)的几组对照数据
| 3 | 4 | 5 | 6 |
| 2.5 | 3 | 4 | 4.5 |
(
)
(1)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?