题目内容
【题目】已知圆,直线,.
(1)证明:不论取任何实数,直线与圆恒交于两点;
(2)当直线被圆截得的弦长最短时,求此最短弦长及直线的方程.
【答案】(1)见解析(2)最短弦长为.直线的方程为.
【解析】
(1)把直线的方程变形后,根据直线恒过定点,得到关于与的二元一次方程组,求出方程组的解即为直线恒过的定点坐标,然后利用两点间的距离公式求出此点到圆心的距离,发现小于圆的半径,得到此点在圆内,故直线与圆恒交于两点;
(2)由平面几何知识可知,当直线与垂直时,所截取的线段最短,由圆心和定点的坐标求出直线的斜率,根据两直线垂直时斜率的乘积为,求出直线的斜率,由的坐标和求出的斜率写出直线的方程,再由与的坐标,利用两点间的距离公式求出即为弦心距,根据圆的半径,弦心距及弦的一半构成的直角三角形,利用勾股定理即可求出此时的弦长.
解:(1)证明:因为,
所以,
因为,所以
故直线过定点.
因为圆的圆心为,,,则点在圆内.
所以直线与圆恒交于两点.
(2)由(1)知直线过定点,所以当直线被圆截得的弦长最短时有,
弦心距,
所以最短弦长为.
因为,所以,故直线的方程为.
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,再随机抽取3人赠送礼品,试求抽取3人中恰有2人是“微信控”的概率.
参考公式:,其中.
参考数据:
0.050 | 0.040 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【题目】在某校举行的航天知识竞赛中,参与竞赛文科生与理科生人数之比为,且成绩分布在,分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.
文科生 | 理科生 | 合计 | |
获奖 | 5 | ||
不获奖 | |||
合计 | 200 |
参考公式: (其中为样本容量)
随机变量的概率分布:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)求的值;
(2)填写上方的列联表,并判断能否有超过的把握认为“获奖与学生的文、理科有关”?