【题目】已知抛物线C:y2=2px(p>0)的焦点为F,C上一点(3,m)到焦点的距离为5.(1)求C的方程;(2)过F作直线l,交C于A、B两点,若线段AB中点的纵坐标为﹣1,求直线l的方程.
【题目】定义在R上的函数f(x)的图象关于点(﹣ ,0)成中心对称,且对任意的实数x都有 ,f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)++f(2 017)=( )A.0B.﹣2C.1D.﹣4
【题目】△ABC中,角A、B、C的对边分别为a、b、c.已知(a+c)2﹣b2=3ac(1)求角B;(2)当b=6,sinC=2sinA时,求△ABC的面积.
【题目】已知函数f(x)= sinxcosx+sin2x﹣ .(1)求f(x)的最小正周期及其对称轴方程;(2)设函数g(x)=f( + ),其中常数ω>0,|φ|< . (i)当ω=4,φ= 时,函数y=g(x)﹣4λf(x)在[ , ]上的最大值为 ,求λ的值;(ii)若函数g(x)的一个单调减区间内有一个零点﹣ ,且其图象过点A( ,1),记函数g(x)的最小正周期为T,试求T取最大值时函数g(x)的解析式.
【题目】已知等差数列{an},公差为2,的前n项和为Sn , 且a1 , S2 , S4成等比数列,(1)求数列{an}的通项公式;(2)设bn= (n∈N*),求数列{bn}的前n项和Tn .
【题目】如图所示,我市某居民小区拟在边长为1百米的正方形地块ABCD上划出一个三角形地块APQ种植草坪,两个三角形地块PAB与QAD种植花卉,一个三角形地块CPQ设计成水景喷泉,四周铺设小路供居民平时休闲散步,点P在边BC上,点Q在边CD上,记∠PAB=a. (1)当∠PAQ= 时,求花卉种植面积S关于a的函数表达式,并求S的最小值;(2)考虑到小区道路的整体规划,要求PB+DQ=PQ,请探究∠PAQ是否为定值,若是,求出此定值,若不是,请说明理由.
【题目】已知a∈R,函数f(x)=x2﹣2ax+5.(1)若a>1,且函数f(x)的定义域和值域均为[1,a],求实数a的值;(2)若不等式x|f(x)﹣x2|≤1对x∈[ , ]恒成立,求实数a的取值范围.
【题目】设椭圆 + =1(a>b>0)的左、右焦点分别为F1、F2 , P是椭圆上一点,|PF1|=λ|PF2|( ≤λ≤2),∠F1PF2= ,则椭圆离心率的取值范围为( )A.(0, ]B.[ , ]C.[ , ]D.[ ,1)
【题目】已知函数y=f(x)是R上的偶函数,且当x≤0时,f(x)=log (1﹣x)+x.(1)求f(1)的值;(2)求函数y=f(x)的表达式,并直接写出其单调区间(不需要证明);(3)若f(lga)+2<0,求实数a的取值范围.
【题目】在正方体ABCD﹣A1B1C1D1中,直线DC1与平面A1BD所成角的余弦值是( )A.B.C.D.