【题目】若偶函数f(x)在区间[﹣1,0]上是减函数,α,β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是( )A.f(cosα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(cosα)<f(sinβ)D.f(sinα)>f(sinβ)
【题目】如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C,C1分别为AB,A1B1的中点,现把平行四边形ABB1A1沿CC1折起如图2所示,连接B1C,B1A,B1A1 . (1)求证:AB1⊥CC1;(2)若AB1= ,求二面角C﹣AB1﹣A1的余弦值.
【题目】函数y=x+sin|x|,x∈[﹣π,π]的大致图象是( )A.B.C.D.
【题目】将函数y=sin(x﹣ )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移 个单位,得到的图象对应的解析式是( )A.B.C.D.
【题目】已知等差数列{an}的前n项和为Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比数列,公比不为1.(1)求数列{an}的通项公式;(2)设bn= ,求数列{bn}的前n项和Tn .
【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程 =1表示焦点在x轴上的双曲线. (Ⅰ)命题q为真命题,求实数k的取值范围;(Ⅱ)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.
【题目】如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE(A′平面ABC)是△ADE绕DE旋转过程中的一个图形,有下列命题: ①平面A′FG⊥平面ABC;②BC∥平面A′DE;③三棱锥A′﹣DEF的体积最大值为 a3;④动点A′在平面ABC上的射影在线段AF上;⑤二面角A′﹣DE﹣F大小的范围是[0, ].其中正确的命题是(写出所有正确命题的编号)
【题目】已知向量 =(cosx+sinx,1), =(cosx+sinx,﹣1)函数g(x)=4 .(1)求函数g(x)在[ , ]上的值域;(2)若x∈[0,2016π],求满足g(x)=0的实数x的个数;(3)求证:对任意λ>0,都存在μ>0,使g(x)+x﹣4<0对x∈(﹣∞,λμ)恒成立.
【题目】已知定义域为R的函数f(x)= 是奇函数.(1)求实数a的值,并判断f(x)的单调性(不用证明);(2)已知不等式f(logm )+f(﹣1)>0恒成立,求实数m的取值范围.
【题目】已知命题p: <1,q:x2+(a﹣1)x﹣a>0,若p是q的充分不必要条件,则实数a的取值范围是( )A.(﹣2,﹣1]B.[﹣2,﹣1]C.[﹣3,﹣1]D.[﹣2,+∞)