4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1有相同的长轴,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的短轴长与椭圆$\frac{{y}^{2}}{21}$+$\frac{{x}^{2}}{9}$=1的短轴长相等,则( )
| A. | a2=25,b2=16 | B. | a2=9,b2=25 | ||
| C. | a2=25,b2=9或a2=9,b2=25 | D. | a2=25,b2=9 |
3.已知焦点在x轴上,长、短半轴之和为10,焦距为4$\sqrt{5}$,则椭圆的方程为( )
| A. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{36}$=1 | C. | $\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{y}^{2}}{6}$+$\frac{{x}^{2}}{4}$=1 |
2.设f(x)是定义在R上的偶函数f(x)+f(2-x)=0.当x∈[0,1]时f(x)=x2-1,若关于x的方程f(x)-kx=0恰有三个不同的实数解,则正实数k的取值范围是( )
| A. | (5-2$\sqrt{6}$,4-$\sqrt{13}$) | B. | (8-2$\sqrt{15}$,4-2$\sqrt{3}$) | C. | (5-2$\sqrt{6}$,4-2$\sqrt{3}$) | D. | (8-2$\sqrt{15}$,4-$\sqrt{13}$) |
18.已知方程$\frac{{x}^{2}}{2-a}$+$\frac{{y}^{2}}{a-1}$=1表示椭圆,那么a的范围为(1,$\frac{3}{2}$)∪($\frac{3}{2}$,2).
17.已知等比数列{an}的前n项和为Sn,且$\frac{{S}_{8}-{S}_{6}}{{S}_{6}-{S}_{4}}$=$\sqrt{2}$,则$\frac{{a}_{8}}{{a}_{4}}$=( )
0 251745 251753 251759 251763 251769 251771 251775 251781 251783 251789 251795 251799 251801 251805 251811 251813 251819 251823 251825 251829 251831 251835 251837 251839 251840 251841 251843 251844 251845 251847 251849 251853 251855 251859 251861 251865 251871 251873 251879 251883 251885 251889 251895 251901 251903 251909 251913 251915 251921 251925 251931 251939 266669
| A. | $\sqrt{2}$ | B. | 2 | C. | 4 | D. | 16 |