题目内容

3.已知焦点在x轴上,长、短半轴之和为10,焦距为4$\sqrt{5}$,则椭圆的方程为(  )
A.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{36}$=1C.$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{y}^{2}}{6}$+$\frac{{x}^{2}}{4}$=1

分析 设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意可得a+b=10,2c=4$\sqrt{5}$,a2-b2=c2,解方程可得a,b,即可得到椭圆方程.

解答 解:设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得a+b=10,2c=4$\sqrt{5}$,
a2-b2=c2
解方程可得a=6,b=4.
即有椭圆方程为$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1.
故选A.

点评 本题考查椭圆的方程的求法,注意运用待定系数法,解方程的思想,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网