60.5~70.5
9
50.5~60.5
3
解 (1)由于各组的组距相等,所以各组的频率与各小长方形的高成正比且各组频率的和等于1,那么各组的频率分别为,,,,.设样本容量为n,则=,所以样本容量n=48.
2分
(2)
成绩
频数
频率
分析 当样本中的个体取不同的值较多时,通常用频率分布直方图的面积来表示各个区间内取值的概率,所有小矩形的面积之和等于1.
[]17(本小题满分8分)从全校参加科技知识竞赛的学生试卷中,抽取一个样本,考察竞赛的成绩分布.将样本分成5组,绘成频率分布直方图(如右图),图中从左到右各小组的小长方形的高的比是1∶3∶6∶4∶2,最右边一组的频数是6.
请结合直方图提供的信息,解答下列问题:
(1)样本的容量是多少?
(2)列出频率分布表;
(3)成绩落在哪个范围内的人数最多?并求该小组的频数、频率;
(4)估计这次竞赛中,成绩不低于60分的学生占总人数的百分率.
保险公司要盈利,必须使Eξ>0.于是a>30 000p1+10 000p2.8分
=a-30 000p1-10 000p2.
解 设ξ为保险公司对每一投保人的盈利数,则ξ的可能取值为a,a-30 000,a-10 000. 2分
且P(ξ=a)=1-p1-p2,
P(ξ=a-30 000)=p1,
P(ξ=a-10 000)=p2. 5分
随机变量ξ的概率分布列为
ξ
A
a-30 000
a-10 000
P
1-p1-p2
p1
p2
6分
Eξ=a(1-p1-p2)+(a-30 000)p1+(a-10 000)p2
16.(本小题满分8分)人寿保险中的某一年龄段,在一年的保险期内,每个被保险人需交纳保险费a元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元.经统计此年龄段一年内意外死亡的概率为p1,非意外死亡的概率为p2,则保险费a需满足什么条件,保险公司才可能盈利?
分析 本题考查离散型随机变量的期望在现实生活中的应用.
要使保险公司盈利,需使它所收总保险费大于总赔付费,即它的期望大于零.解题的关键是列出分布列,求出数学期望.