2009最有影响力高考复习题(数学)3(3+3+4)
文博浪花工作室王培博推荐(
一、选择题:
1、已知直线交于A、B两点,O是坐标原点,向量、满足,则实数a的值是( )答D
A.2 B.-
2、的图象过点(2,1),则函数的图象一定过点( )答D
A. B. C. D.
3、设分别是双曲线的左右焦点.若点P在双曲线上,且则 ( )答B
A. B. C. D.
二、填空题:
4、在△ABC中,角A、B、C的对边分别为、、,且,则角B的大小是 .
5、在的展开式中,含的系数为 .答135.
6、如右图,在杨辉三角形中,从上往下数共有n(n∈N*)行,在这些数中非1的数字之和为 答:
三、解答题:
7、某地的高考数学试卷中共有8道选择题,每个选择题都给了4个选项(其中有且仅有一个选项是正确的).评分标准规定:每题只选1项,答对得5分,不答或答错得0分.某考生每道题都给出了答案,已确定有4道题的答案是正确的,而其余的题中,有两道题每题都可判断其有两个选项是错误的,有一道题可以判断其一个选项是错误的,还有一道题因不理解题意只能乱猜.对于这8道选择题,试求:
(Ⅰ) 该考生得分为40分的概率;
(Ⅱ) 该考生所得分数的分布列及数学期望.
8、已知双曲线的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为 (1)求双曲线的方程;(2)直线与该双曲线交于不同的两点、,且、两点都在以A为圆心的同一圆上,求m的取值范围.
9、(14分)已知等差数列,且第二项、第五项、第十 四项分别是一个等比数列的第二项、第三项、第四项.
(1)求数列的通项公式;
(2)设使得对任意的;若不存在,请说明理由.
(Ⅰ)求证:;
(Ⅱ)求二面角的大小;
(Ⅲ)在上是否存在点,使得∥平面,
若存在,试给出证明;若不存在,请说明理由
四、3答案:
4、由余弦定理,得 .则,即.所以B的大小是或.
7、解: (Ⅰ)要得40分,8道选择题必须全做对,在其余四道题中,有两道题答对的概率为,有一道题答对的概率为,还有一道题答对的概率为,所以得40分的概率为
.
(Ⅱ)依题意,该考生得分的取值是20,25,30,35,40,得分为20表示只做对了四道题,其余各题都做错,故所求概率为;
同样可求得得分为25分的概率为
;
得分为30分的概率为;得分为35分的概率为;
得分为40分的概率为. 于是的分布列为
20
25
30
35
40
故=.所得分数的数学期望为.
8、解析几何:(1) (2)
9、解:(I)由题意得,
整理得
(II)
假设存在整数总成立。
又,
是单调递增的。
又的最大值为8。
10、解法一: (Ⅰ)在直三棱柱中,底面,在底面上的射影为.
由可得.,所以.
(Ⅱ)过作于,连结.
故为二面角的平面角.
在中,,在Rt中,,
故所求二面角的大小为 .
(Ⅲ)存在点使∥平面,且为中点,下面给出证明.
设与交于点则为中点.在中, 连结,分别为的中点,故为的中位线,∥,又平面,平面,∥平面.故存在点为中点,使∥平面.
解法二 直三棱柱,底面三边长,
两两垂直.如图以为坐标原点,建立空间直角坐标系,则
.
(Ⅰ),,故.
设平面的一个法向量为,
,,
由得
令,则.则.
故<>=.所求二面角的大小为。 (Ⅲ)同解法一
www.1010jiajiao.com