网址:http://m.1010jiajiao.com/timu_id_94188[举报]
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)证明:易得,于是,所以
(2) ,设平面PCD的法向量,
则,即.不防设,可得.可取平面PAC的法向量于是从而.
所以二面角A-PC-D的正弦值为.
(3)设点E的坐标为(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)证明:由,可得,又由,,故.又,所以.
(2)如图,作于点H,连接DH.由,,可得.
因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值为.
(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
查看习题详情和答案>>
如图,三棱锥中,侧面底面, ,且,.(Ⅰ)求证:平面;
(Ⅱ)若为侧棱PB的中点,求直线AE与底面所成角的正弦值.
【解析】第一问中,利用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,又EH//PO,所以EH平面ABC ,
则为直线AE与底面ABC 所成角,
解
(Ⅰ) 证明:由用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以
………………………………………………6分
(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,
因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,
又EH//PO,所以EH平面ABC ,
则为直线AE与底面ABC 所成角,
且………………………………………10分
又PO=1/2AC=,也所以有EH=1/2PO=,
由(Ⅰ)已证平面PBC,所以,即,
故,
于是
所以直线AE与底面ABC 所成角的正弦值为
查看习题详情和答案>>
如图,在三棱柱中,侧面,为棱上异于的一点,,已知,求:
(Ⅰ)异面直线与的距离;
(Ⅱ)二面角的平面角的正切值.
【解析】第一问中,利用建立空间直角坐标系
解:(I)以B为原点,、分别为Y,Z轴建立空间直角坐标系.由于,
在三棱柱中有
,
设
又侧面,故. 因此是异面直线的公垂线,则,故异面直线的距离为1.
(II)由已知有故二面角的平面角的大小为向量与的夹角.
查看习题详情和答案>>
(1)求证:BE=EB1;
(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
①∵
∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,
②∵
∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③∵
∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④∵
∴FG∥AA1,△AA1C∽△FGC,
⑤∵
∴FG=
1 |
2 |
1 |
2 |
1 |
2 |
如图,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.
(Ⅰ)求证:BE=EB1;
(Ⅱ)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
(Ⅰ)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
① ∵
∴EG⊥侧面AC1;取AC的中点F,连结BF,FG,由AB=BC得BF⊥AC,
② ∵
∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③ ∵
∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④ ∵
∴FG∥AA1,△AA1C∽△FGC,
⑤ ∵
即,故
查看习题详情和答案>>