ÌâÄ¿ÄÚÈÝ
20£®ÈçͼËùʾ£¬Á½¸ù×ã¹»³¤µÄ¹â»¬Æ½ÐнðÊôµ¼¹ìMN¡¢PQ¼ä¾àÀëΪL£®Æäµç×è²»¼Æ£¬Á½µ¼¹ì¼°Æä¹¹³ÉµÄƽÃæÓëˮƽÃæ³É¦È½Ç£¬Á½¸ùÓÃϸÏßÁ¬½ÓµÄ½ðÊô¸Ëab¡¢cd·Ö±ð´¹Ö±µ¼¹ì·ÅÖã¬Æ½ÐÐбÃæÏòÉϵÄÍâÁ¦F×÷ÓÃÔÚ¸ËabÉÏ£¬Ê¹Á½¸Ë¾²Ö¹£¬ÒÑÖªÁ½½ðÊô¸Ëab¡¢cdµÄÖÊÁ¿·Ö±ðΪmºÍ2m£¬Á½½ðÊô¸ËµÄ×ܵç×èΪR£¬²¢ÇҺ͵¼¹ìʼÖÕ±£³ÖÁ¼ºÃ½Ó´¥£¬Õû¸ö×°Öô¦ÔÚ´¹Ö±ÓÚµ¼¹ìƽÃæÏòÉϵÄÔÈÇ¿´Å³¡ÖУ¬´Å¸ÐӦǿ¶ÈΪB£®Ä³Ê±¿Ì½«Ï¸ÏßÉնϣ¬±£³ÖF²»½»£¬Ç󣺣¨1£©Á½¸ËËÙ¶Èδ´ï×î´óÇ°£¬ab¡¢cdÁ½¸ËµÄ¼ÓËٶȵĴóС֮±È£»
£¨2£©Á½¸ËËÙ¶È×î´óʱ£¬µç·Öеĵ繦ÂÊ£®
·ÖÎö £¨1£©¶ÔÕûÌå·ÖÎö£¬Çó³öÉÕ¶ÏϸÏßÇ°£¬ÀÁ¦µÄ´óС£¬ÉÕ¶ÏϸÏߺó£¬Í¨¹ýÁ½°ôµÄµçÁ÷´óСÏàµÈ£¬°²ÅàÁ¦´óСÏàµÈ£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶ÈÖ®±È£®
£¨2£©µ±ab°ôºÍcd°ô¼ÓËÙ¶ÈΪÁãʱ£¬ËٶȾù´ï×î´ó£¬¸ù¾ÝÊÜÁ¦Æ½ºâ£¬½áºÏ±ÕºÏµç·ŷķ¶¨Âɼ°¹¦Âʱí´ïʽ¼´¿É
½â´ð ½â£º£¨1£©Á½¸Ë¾²Ö¹Ê±£¨m+2m£©gsin¦È=F
ÉÕ¶ÏϸÏߺó£¬ab£¬cd¸ËµÄËٶȴøÏ·ֱðΪv1£¬v2£¬¼ÓËٶȴóС·Ö±ðΪa1£¬a2
E=BL£¨v1+v2£©
I=$\frac{E}{R}$
¿ÉÖªab£¬cd¸ÐÊܵ½µÄ°²ÅàÁ¦´óСÏàµÈ£¬
F-mgsin¦È-F°²=ma1
2mgsin¦È-F°²=2ma2
ÁªÁ¢½âµÃ$\frac{{a}_{1}}{{a}_{2}}=\frac{2}{1}$
£¨2£©ÓÉÓÚÁ½¸ËµÄ°²ÅàÁ¦´óСÏàµÈ£¬µ±¼ÓËÙ¶ÈΪÁãʱËٶȵ½´ï×î´ó
¶ÔÓÚcd
2mgsin¦È-BImL=0
$P{=I}_{m}^{2}R$
ÁªÁ¢½âµÃ$P=\frac{4{m}^{2}{g}^{2}Rsi{n}^{2}¦È}{{B}^{2}{L}^{2}}$
´ð£º£¨1£©Á½¸ËËÙ¶Èδ´ï×î´óÇ°£¬ab¡¢cdÁ½¸ËµÄ¼ÓËٶȵĴóС֮±ÈΪ2£º1£»
£¨2£©Á½¸ËËÙ¶È×î´óʱ£¬µç·Öеĵ繦ÂÊ$\frac{4{m}^{2}{g}^{2}Rsi{n}^{2}¦È}{{B}^{2}{L}^{2}}$
µãÆÀ ±¾Ìâ×ۺϿ¼²éÁËÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢±ÕºÏµç·ŷķ¶¨ÂÉ¡¢×ÛºÏÐÔÇ¿£¬±¾ÌâµÄÄѵãÊÇË«¸ËÄ£ÐÍ£¬Á½¸ËÇи²úÉú¸ÐÓ¦µç¶¯ÊÆ
A£® | ¼×²¨µÄƵÂʱÈÒÒ²¨µÄƵÂÊ´ó | |
B£® | Á½Áв¨Í¬Ê±´«µ½×ø±êÔµã | |
C£® | ÓÉÓÚÁ½²¨Õñ·ù²»µÈ£¬¹ÊÁ½Áв¨ÏàÓöʱ²»»á·¢Éú¸ÉÉæÏÖÏó | |
D£® | x=0.5cm´¦µÄÖʵ㿪ʼÕñ¶¯Ê±µÄ·½ÏòÏò+y·½Ïò | |
E£® | Á½Áв¨ÏàÓöʱx=0´¦ÎªÕñ¶¯¼õÈõµã |
íÀÂëÖÊÁ¿M£¨g£© | 0 | 30 | 60 | 90 | 120 | 150 |
µ¯»ÉµÄ×ÜL£¨cm£© | 6.00 | 7.15 | 8.34 | 9.48 | 10.46 | 11.79 |
£¨2£©ÓÉÉÏÒ»ÎÊËù×÷ͼÏ߿ɵýáÂÛ£ºµ¯»ÉµÄµ¯Á¦´óСºÍµ¯»ÉÉ쳤Á¿´óС³ÉÕý±È
£¨3£©¸Ãµ¯»É¾¢¶ÈϵÊýk=25N/m£¨½á¹û±£ÁôÁ½Î»ÓÐЧÊý×Ö£©£®
A£® | ¦Ñ=$\frac{3{g}_{0}}{¦ÐGd}$ | B£® | ¦Ñ=$\frac{{g}_{0}{T}^{2}}{3¦Ðd}$ | C£® | ¦Ñ=$\frac{3¦Ð}{G{T}^{2}}$ | D£® | ¦Ñ=$\frac{6M}{¦Ð{d}^{3}}$ |
A£® | ƵÂÊΪv1µÄ¹âÕÕÉäʱ£¬¹âµç×ÓµÄ×î´ó³õËÙ¶ÈΪ$\sqrt{\frac{2e{U}_{1}}{m}}$ | |
B£® | Òõ¼«K½ðÊôµÄÒݳö¹¦Îªhv1 | |
C£® | Òõ¼«K½ðÊôµÄ¼«ÏÞƵÂÊÊÇ$\frac{{U}_{2}{v}_{1}-{U}_{1}{v}_{2}}{{U}_{1}-{U}_{2}}$ | |
D£® | ÆÕÀʿ˳£Êýh=$\frac{e£¨{U}_{1}-{U}_{2}£©}{{v}_{1}-{v}_{2}}$ |
A£® | v2=v1 | B£® | v2=v1£®cos¦È | C£® | v2=0 | D£® | v2=$\frac{{v}_{1}}{cos¦È}$ |