题目内容

14.如图所示,水平放置的平行金属板A和B间的距离为d,极长L=$\sqrt{3}$d,B板的右侧边缘恰好是倾斜挡板NM上的一个小孔K,NM与水平挡板NP成60°角,K与N间的距离$\overline{KN}$=a.现有一质量为m、电荷量为q的带正电的粒子,从AB的中点O以平行于金属板方向OO′的速度v0射入,不计粒子的重力.现在A、B板上加一恒定电压,则该粒子穿过金属板后恰好穿过小孔K:
(1)求A、B板上所加的恒定电压大小.
(2)求带电粒子到达K点的速度.
(3)在足够长的NM和NP两档板所夹的某一区域存在一垂直纸面向里的匀强磁场,使粒子经过磁场偏转后能垂直打到水平挡板NP上(之前与挡板没有碰撞),求该磁场的磁感应强度的最小值Bmin

分析 (1)带电粒子做类平抛运动,根据平抛运动的基本公式即可求解;
(2)先求出射入的粒子,在进入K时竖直方向的分速度,再求出水平速度,根据速度的合成法则求出和速度;
(3)粒子从K点入射后做匀速直线运动从D点开始进入磁场,粒子在进入磁场后,根据左手定则,所受的洛伦兹力斜向上,要使粒子能垂直打到水平挡板NP,则粒子需偏转300°后从E射出,做匀速直线运动垂直打到NP.粒子作圆周运动时,洛伦兹力提供向心力,要使B最小,则要半径r最大,临界情况是圆周运动的轨迹恰好跟两挡板相切,结合几何关系即可求解.

解答 解:(1)带电粒子做类平抛运动,则:L=v0t,
$\frac{1}{2}$d=$\frac{1}{2}$at2=$\frac{1}{2}$$\frac{qU}{md}$t2,已知:L=$\sqrt{3}$d,解得:U=$\frac{m{v}_{0}^{2}}{3q}$;
(2)射入的粒子,在进入K时竖直方向的分速度为vy,则:$\frac{1}{2}$d=$\frac{{v}_{y}}{2}$t,
水平方向:L=$\sqrt{3}$d=v0t,tanθ=$\frac{{v}_{y}}{{v}_{0}}$,解得:tanθ=$\frac{\sqrt{3}}{3}$,θ=30°,
粒子速度:v=$\sqrt{{v}_{0}^{2}+{v}_{y}^{2}}$=$\frac{2\sqrt{3}}{3}$v0,粒子垂直MN板入射.
(3)如图所示,粒子从K点入射后做匀速直线运动从D点开始进入磁场,
粒子在进入磁场后,根据左手定则,所受的洛伦兹力斜向上,要使粒子能垂直打到水平挡板NP,
则粒子需偏转300°后从E射出,做匀速直线运动垂直打到NP.
粒子作圆周运动时,洛伦兹力提供向心力,
由牛顿第二定律得:qvB=m$\frac{{v}^{2}}{r}$,解得:B=$\frac{mv}{qr}$,
要使B最小,则要半径r最大,临界情况是圆周运动的轨迹恰好跟两挡板相切,如图所示:

根据对称性圆周运动的圆心C、交点G位于∠MNP的角平分线上,则由几何关系可得:
CDKF是边长为r的正方形.则在三角形NCF中,有:$\sqrt{3}$r=a+r,解得:r=$\frac{a}{\sqrt{3}-1}$,
解得:Bmin=$\frac{(6-2\sqrt{3})m{v}_{0}}{3qa}$;
答:(1)A、B板上所加的恒定电压大小为$\frac{m{v}_{0}^{2}}{3q}$.
(2)带电粒子到达K点的速度为$\frac{2\sqrt{3}}{3}$v0
(3)该磁场的磁感应强度的最小值Bmin为$\frac{(6-2\sqrt{3})m{v}_{0}}{3qa}$.

点评 本题主要考查了平抛运动、圆周运动的基本公式的应用,要使B最小,则要半径r最大,临界情况是圆周运动的轨迹恰好跟两挡板相切,要求同学们能结合几何关系求解,难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网