ÌâÄ¿ÄÚÈÝ
12£®ÈçͼËùʾ£¬ÔڴŸÐӦǿ¶È´óСΪB¡¢·½Ïò´¹Ö±ÏòÉϵÄÔÈÇ¿´Å³¡ÖУ¬ÓÐÒ»ÉÏ¡¢ÏÂÁ½²ã¾ùÓëˮƽÃæƽÐеġ°U¡±Ð͹⻬½ðÊôµ¼¹ì£¬ÔÚµ¼¹ìÃæÉϸ÷·ÅÒ»¸ùÍêÈ«ÏàͬµÄÖÊÁ¿ÎªmµÄÔÈÖʽðÊô¸ËA1ºÍA2£¬¿ªÊ¼Ê±Á½¸ù½ðÊô¸ËλÓÚͬһÊúÖ±ÃæÄÚÇÒ¸ËÓë¹ìµÀ´¹Ö±£®ÉèÁ½µ¼¹ìÃæÏà¾àΪH£¬µ¼¹ì¿íΪL£¬µ¼¹ì×ã¹»³¤ÇÒµç×è²»¼Æ£¬½ðÊô¸Ëµ¥Î»³¤¶ÈµÄµç×èΪr£®ÏÖÓÐÒ»ÖÊÁ¿Îª$\frac{m}{2}$µÄ²»´øµçСÇòÒÔˮƽÏòÓÒµÄËÙ¶Èv0ײ»÷¸ËA1µÄÖе㣬ײ»÷ºóСÇò·´µ¯Â䵽ϲãÃæÉϵÄCµã£®CµãÓë¸ËA2³õʼλÖÃÏà¾àΪS£®Ç󣺣¨1£©»Ø·ÄÚ¸ÐÓ¦µçÁ÷µÄ×î´óÖµ£»
£¨2£©Õû¸öÔ˶¯¹ý³ÌÖиÐÓ¦µçÁ÷×î¶à²úÉúÁ˶àÉÙÈÈÁ¿£»
£¨3£©µ±¸ËA2Óë¸ËA1µÄËٶȱÈΪ1£º3ʱ£¬A2Êܵ½µÄ°²ÅàÁ¦´óС£®
·ÖÎö £¨1£©Ð¡Çòײ»÷½ðÊô¸ËµÄ¹ý³Ì£¬×ñÊض¯Á¿Êغ㶨ÂÉ£®¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÁÐʽ£®¸ù¾ÝƽÅ×Ô˶¯µÄ¹æÂÉÇó³öÅöºóСÇòµÄËٶȣ®´Ó¶øÇó³ö½ðÊô¸Ë»ñµÃµÄËٶȣ®ÔÙÓÉ·¨ÀµÚ¶¨ÂɺÍÅ·Ä·¶¨ÂɽáºÏÇó³öÅöºó˲¼äµç·ÖеĵçÁ÷£¬¼´»Ø·ÄÚ¸ÐÓ¦µçÁ÷µÄ×î´óÖµ£®
£¨2£©Åöºó£¬ÔÚ°²ÅàÁ¦×÷ÓÃÏ£¬½ðÊô¸ËA1×ö¼õËÙÔ˶¯£¬½ðÊô¸ËA2×ö¼ÓËÙÔ˶¯£¬µ±Á½¸ËËٶȴóСÏàµÈʱ£¬»Ø·ÄÚ¸ÐÓ¦µçÁ÷Ϊ0£¬¸ù¾Ý¶¯Á¿Êغ㶨ÂɺÍÄÜÁ¿Êغ㶨ÂɽáºÏÇó½âÈÈÁ¿£®
£¨3£©½ðÊô¸ËA1¡¢A2Á½¸ËÔÚͬһ¸ö½ðÊôUÐε¼¹ìÉ϶¼×ö±äËÙÔ˶¯£¬Ô˶¯·½ÏòÏàͬ£¨¶¼ÏòÓÒ£©£¬Í¬Ò»Ê±¿ÌÁ½¸Ë¶¼Çиî´Å¸ÐÏß²úÉú¸ÐÓ¦µç¶¯ÊÆ£¬Á½¸ö¸ÐÓ¦µç¶¯ÊÆÔÚ¿Õ¼äÖеķ½ÏòÏàͬ£¨¶¼ÏòÍ⣩£¬µ«Á½¸ö¸ÐÓ¦µç¶¯ÊÆÔڻطÖеķ½ÏòÏà·´£¬ËùÒÔ×ܵ綯ÊÆÊÇÕâÁ½¸öµç¶¯ÊÆÖ®²î£¬¼´E=BL£¨v1-v2£©£¬µçÁ÷ÊǵçÁ÷ÊÇ$I=\frac{{BL£¨{v_1}-{v_2}£©}}{R}$£¬·½ÏòΪ½ðÊô¸ËA1ÖиÐÓ¦µçÁ÷µÄ·½Ïò£¬ÒòΪA1±ÈA2²úÉúµÄ¸ÐÓ¦µç¶¯Êƴ󣬰²ÅàÁ¦ÊÇ$F=\frac{{{B^2}{L^2}£¨{v_1}-{v_2}£©}}{R}$£¬·½Ïò¶¼ºÍËٶȷ½ÏòÏà·´£¨¶¼Ïò×󣩣®¸ù¾Ý°²ÅàÁ¦¹«Ê½Çó½â£®
½â´ð ½â£º£¨1£©Éèײ»÷ºóСÇò·´µ¯µÄËÙ¶ÈΪv1£¬½ðÊô¸ËA1µÄËÙ¶ÈΪv01£¬È¡Ë®Æ½ÏòÓÒΪÕý·½Ïò£¬¸ù¾Ý¶¯Á¿Êغ㶨ÂÉ£¬µÃ $\frac{m}{2}{v_0}=\frac{m}{2}£¨-{v_1}£©+m{v_{01}}$£¬¢Ù
¶ÔÓÚСÇòµÄƽÅ×Ô˶¯£¬¸ù¾ÝƽÅ×Ô˶¯µÄ·Ö½â£¬ÓÐ S=v1t£¬$H=\frac{1}{2}g{t^2}$
ÓÉÒÔÉÏÁ½Ê½½âµÃ v1=$S\sqrt{\frac{g}{2H}}$ ¢Ú
¢Ú´úÈë¢ÙµÃ ${v_{01}}=\frac{1}{2}£¨{v_0}+S\sqrt{\frac{g}{2H}}£©$ ¢Û
»Ø·ÄÚ¸ÐÓ¦µç¶¯ÊƵÄ×î´óֵΪEm=BLv01
µç×èΪR=2Lr
ËùÒԻطÄÚ¸ÐÓ¦µçÁ÷µÄ×î´óֵΪ Im=$\frac{{B£¨{v_0}+s\sqrt{\frac{g}{2H}}£©}}{4r}$£® ¢Ü
£¨2£©ÒòΪÔÚ°²ÅàÁ¦µÄ×÷ÓÃÏ£¬½ðÊô¸ËA1×ö¼õËÙÔ˶¯£¬½ðÊô¸ËA2×ö¼ÓËÙÔ˶¯£¬µ±Á½¸ËËٶȴóСÏàµÈʱ£¬»Ø·ÄÚ¸ÐÓ¦µçÁ÷Ϊ0£¬¸ù¾ÝÄÜÁ¿Êغ㶨ÂÉ£¬$\frac{1}{2}mv_{01}^2=Q+\frac{1}{2}•2m{v^2}$ ¢Ý
ÆäÖÐvÊÇÁ½¸ËËٶȴóСÏàµÈʱµÄËٶȣ¬¸ù¾Ý¶¯Á¿Êغ㶨ÂÉ£¬mv01=2mv
ËùÒÔ $v=\frac{1}{2}{v_{01}}$£¬´úÈë¢ÝʽµÃ Q=$\frac{1}{16}m$${£¨{v_0}+s\sqrt{\frac{g}{2H}}£©^2}$¢Þ
£¨3£©Éè½ðÊô¸ËA1¡¢A2ËٶȴóС·Ö±ðΪv1¡¢v2£¬¸ù¾Ý¶¯Á¿Êغ㶨ÂÉ£¬mv01=mv1+mv2£¬ÓÖ$\frac{v_1}{v_2}=\frac{3}{1}$£¬ËùÒÔ${v_1}=\frac{3}{4}{v_{01}}$£¬${v_2}=\frac{1}{4}{v_{01}}$£®
½ðÊô¸ËA1¡¢A2Ëٶȷ½Ïò¶¼ÏòÓÒ£¬¸ù¾ÝÓÒÊÖ¶¨ÔòÅжÏÖªA1¡¢A2²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆÔڻطÖз½ÏòÏà·´
ËùÒÔ¸ÐÓ¦µç¶¯ÊÆΪE=BL£¨v1-v2£©£¬µçÁ÷Ϊ$I=\frac{E}{2Lr}$£¬°²ÅàÁ¦ÎªF=BIL£¬ËùÒÔ A2Êܵ½µÄ°²ÅàÁ¦´óСΪF=$\frac{{{B^2}L}}{8r}$$£¨{v_0}+s\sqrt{\frac{g}{2H}}£©$£®
µ±È»A1Êܵ½µÄ°²ÅàÁ¦´óСҲÈç´Ë£¬Ö»²»¹ý·½ÏòÏà·´£®
´ð£º
£¨1£©»Ø·ÄÚ¸ÐÓ¦µçÁ÷µÄ×î´óÖµÊÇ$\frac{{B£¨{v_0}+s\sqrt{\frac{g}{2H}}£©}}{4r}$£®
£¨2£©Õû¸öÔ˶¯¹ý³ÌÖиÐÓ¦µçÁ÷×î¶à²úÉúµÄÈÈÁ¿ÊÇ$\frac{1}{16}m$${£¨{v_0}+s\sqrt{\frac{g}{2H}}£©^2}$£®
£¨3£©A2Êܵ½µÄ°²ÅàÁ¦´óСÊÇ$\frac{{{B^2}L}}{8r}$$£¨{v_0}+s\sqrt{\frac{g}{2H}}£©$£®
µãÆÀ ±¾ÌâҪעÖؽðÊô¸ËA1¡¢A2Á½¸ËµÄÔ˶¯¹ý³Ì·ÖÎö£¬Çå³þͬһʱ¿ÌÁ½¸Ë¶¼Çиî´Å¸ÐÏß²úÉú¸ÐÓ¦µç¶¯ÊÆʱ£¬¸ù¾ÝÁ½¸ö¸ÐÓ¦µç¶¯ÊÆÔڻطÖеķ½Ïò»áÇó³öµç·ÖÐ×ܵĸÐÓ¦µç¶¯ÊÆ£®
A£® | ½«µãµçºÉq´ÓAµãÒÆ×ߣ¬Ôò¸ÃµãµÄµç³¡Ç¿¶ÈΪÁã | |
B£® | ½«µçÁ¿ÎªqµÄ¸ºµãµçºÉ·ÅÓÚAµã£¬Aµã³¡Ç¿´óСΪ4.0¡Á104N/C£¬·½ÏòÖ¸ÏòB | |
C£® | Bµã´¦µÄµç³¡Ç¿¶ÈСÓÚ4.0¡Á104N/C | |
D£® | ½«µçÁ¿Îª2qµÄÕýµãµçºÉ·ÅÓÚAµã£¬Aµã³¡Ç¿´óСΪ8.0¡Á104 N/C£¬·½ÏòÖ¸ÏòB |
A£® | ÇáÖÊÉþ³¤Îª$\frac{am}{b}$ | |
B£® | µ±µØµÄÖØÁ¦¼ÓËÙ¶ÈΪ$\frac{a}{m}$ | |
C£® | µ±v2=cʱ£¬ÇáÖÊÉþµÄÀÁ¦´óСΪ$\frac{ac}{b}$+a | |
D£® | Ö»Òªv2¡Ýb£¬Ð¡ÇòÔÚ×îµÍµãºÍ×î¸ßµãʱÉþµÄÀÁ¦²î¾ùΪ6a |