题目内容
【题目】如图所示,在真空室内的P点,能沿平行纸面向各个方向不断发射电荷量为+q、质量为m的粒子(不计重力),粒子的速率都相同.ab为P点附近的一条水平直线,P到直线ab的距离PC=L,Q为直线ab上一点,它与P点相距PQ=.当直线ab以上区域只存在垂直纸面向里、磁感应强度为B的匀强磁场时,水平向左射出的粒子恰到达Q点;当ab以上区域只存在平行该平面的匀强电场时,所有粒子都能到达ab直线,且它们到达ab直线时动能都相等,其中水平向左射出的粒子也恰好到达Q点.已知sin 37°=0.6,cos 37°=0.8,求:
(1)粒子的发射速率;
(2)PQ两点间的电势差;
(3)仅有磁场时,能到达直线ab的粒子所用最长时间和最短时间。
【答案】(1) (2) (3)
【解析】
(1)当只存在匀强磁场时,α粒子由洛伦兹力提供向心力而做匀速圆周运动,画出α粒子的运动轨迹,由几何知识求出α粒子做匀速圆周运动的半径,由牛顿第二定律求出α粒子的发射速率;
(2)当只存在匀强电场时,α粒子做类平抛运动,由牛顿第二定律和运动学结合求解PQ两点间的电势差;
(3)当仅加上述磁场时,根据几何知识确定出轨迹的圆心角,然后求出能到达直线ab的粒子所用最长时间和最短时间.
(1)设粒子做匀速圆周运动的半径为R,过O作PQ的垂线交PQ于A点,如图所示:
由几何知识可得
代入数据可得粒子轨迹半径
洛伦兹力提供向心力Bqv=m
解得粒子发射速度为v=
(2)真空室只加匀强电场时,由粒子到达ab直线的动能相等,可知ab为等势面,电场方向垂直ab向下.水平向左射出的粒子经时间t到达Q点,在这段时间内
=L=at2
式中a=
U=Ed
解得电场强度的大小为U=
(3)只有磁场时,粒子以O1为圆心沿圆弧PD运动,当圆弧和直线ab相切于D点时,粒子速度的偏转角最大,对应的运动时间最长,如图所示.据图有
sin α=
解得α=37°
故最大偏转角γmax=233°
粒子在磁场中运动最大时长
式中T为粒子在磁场中运动的周期.
粒子以O2为圆心沿圆弧PC运动的速度偏转角最小,对应的运动时间最短.据图有
sin β=
解得β=53°
速度偏转角最小为γmin=106°
故最短时长