题目内容
一条河宽s=100m,水流速度v1=3m/s,船在静水速度v2=5m/s,求:
(1)船到达对岸的最短时间tmin
(2)船要以最短距离到达对岸,船与河岸的夹角θ
(3)船以最短距离过河的时间为多少?
(1)船到达对岸的最短时间tmin
(2)船要以最短距离到达对岸,船与河岸的夹角θ
(3)船以最短距离过河的时间为多少?
(1)当以静水中的速度垂直河岸过河的时候渡河时间最短,则知:tmin=
=
s=20s
(2)小船以最短距离过河时,则静水中的速度斜着向上游,合速度垂直河岸,设与河岸的夹角为θ,
则由矢量合成的平行四边形法则解三角形得:cosθ=
=
,
这时船头与河水速度夹角为θ=53°
(3)那么船垂直河岸行驶的速度为v=
m/s=4m/s;
所以渡河时间t=
s=25s;
答:(1)小船过河的最短时间为20s;
(2)要小船以最短距离过河,开船方向与河水速度夹角为53°;
(3)船以最短距离渡河时间为25s.
d |
vc |
100 |
5 |
(2)小船以最短距离过河时,则静水中的速度斜着向上游,合速度垂直河岸,设与河岸的夹角为θ,
则由矢量合成的平行四边形法则解三角形得:cosθ=
vs |
vc |
3 |
5 |
这时船头与河水速度夹角为θ=53°
(3)那么船垂直河岸行驶的速度为v=
52-32 |
所以渡河时间t=
100 |
4 |
答:(1)小船过河的最短时间为20s;
(2)要小船以最短距离过河,开船方向与河水速度夹角为53°;
(3)船以最短距离渡河时间为25s.
练习册系列答案
相关题目