【题目】在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点的横坐标都缩短为原来的倍,纵坐标坐标都伸长为原来的倍,得到曲线,在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴非负半轴为极轴)中,直线的极坐标方程为.
(1)求直线和曲线的直角坐标方程;
(2)设点是曲线上的一个动点,求它到直线的距离的最大值.
【题目】将直角三角形沿斜边上的高折成的二面角,已知直角边,那么下面说法正确的是_________.
(1) 平面平面 (2)四面体的体积是
(3)二面角的正切值是 (4)与平面所成角的正弦值是
【题目】已知函数f(x)=axex,g(x)=x2+2x+b,若曲线y=f(x)与曲线y=g(x)都过点P(1,c).且在点P处有相同的切线l.
(Ⅰ)求切线l的方程;
(Ⅱ)若关于x的不等式k[ef(x)]≥g(x)对任意x∈[﹣1,+∞)恒成立,求实数k的取值范围.
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2a=2bcosC+csinB.
(Ⅰ)求tanB;
(Ⅱ)若C,△ABC的面积为6,求BC.
【题目】已知长方形ABCD中,AB=1,∠ABD=60°,现将长方形ABCD沿着对角线BD折起,使平面ABD⊥平面BCD,则折后几何图形的外接球表面积为_____.
【题目】如图,四棱锥中,,,,,且.
(1)求证:平面平面;
(2)求点到平面的距离.
【题目】椭圆:的左、右焦点分别是,,离心率为,左、右顶点分别为,.过且垂直于轴的直线被椭圆截得的线段长为1.
(1)求椭圆的标准方程;
(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、、三点共线.
【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出吨该商品可获利润万元,未售出的商品,每吨亏损万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了吨该商品.现以(单位:吨,)表示下一个销售季度的市场需求量,(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
(1)将表示为的函数,求出该函数表达式;
(2)根据直方图估计利润不少于57万元的概率;
(3)根据频率分布直方图,估计一个销售季度内市场需求量的平均数与中位数的大小(保留到小数点后一位).
【题目】设椭圆的左、右焦点分别为,,焦距为,过点的直线与椭圆交于,两点,若,且,则椭圆的离心率为( )
A.B.C.D.
【题目】已知椭圆C:的左、右顶点分别为,,上、下顶点分别为,,四边形的面积为,坐标原点O到直线的距离为.
(1)求椭圆C的方程;
(2)过椭圆C上一点P作两条直线,分别与椭圆C相交于异于点P的点A,B,若四边形为平行四边形,探究四边形的面积是否为定值.若是,求出此定值;若不是,请说明理由.