题目内容
【题目】椭圆:的左、右焦点分别是,,离心率为,左、右顶点分别为,.过且垂直于轴的直线被椭圆截得的线段长为1.
(1)求椭圆的标准方程;
(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、、三点共线.
【答案】(1);(2)见解析
【解析】
(1)根据已知可得,结合离心率和关系,即可求出椭圆的标准方程;
(2)斜率不为零,设的方程为,与椭圆方程联立,消去,得到纵坐标关系,求出方程,令求出坐标,要证、、三点共线,只需证,将分子用纵坐标表示,即可证明结论.
(1)由于,将代入椭圆方程,
得,由题意知,即.
又,所以,.
所以椭圆的方程为.
(2)解法一:
依题意直线斜率不为0,设的方程为,
联立方程,消去得,
由题意,得恒成立,设,,
所以,
直线的方程为.令,得.
又因为,,
则直线,的斜率分别为,,
所以.
上式中的分子
,
.所以,,三点共线.
解法二:
当直线的斜率不存在时,由题意,得的方程为,
代入椭圆的方程,得,,
直线的方程为.
则,,,
所以,即,,三点共线.
当直线的斜率存在时,
设的方程为,,,
联立方程消去,得.
由题意,得恒成立,故,.
直线的方程为.令,得.
又因为,,
则直线,的斜率分别为,,
所以.
上式中的分子
所以.
所以,,三点共线.
练习册系列答案
相关题目