【题目】已知
(1)求函数的极值;
(2)设,对于任意,总有成立,求实数的取值范围.
【题目】已知函数(为自然对数的底数)在上有两个零点,则的范围是( )
A. B. C. D.
【题目】已知:椭圆的离心率为,且,过左焦点作一条直线交椭圆于、两点,过线段的中点作的垂线交轴于点.
(1)求椭圆方程;
(2)当面积最大时,求直线的斜率.
【题目】在四棱锥中,底面为菱形,,平面,且,,是的中点.
(1)求证:平面;
(2)求平面与平面所成锐二面角的余弦值.
【题目】甲、乙、丙三名乒乓球手进行单打对抗比赛,每两人比赛一场,共赛三场,每场比赛胜者得3分,负者得0分,在每一场比赛中,甲胜乙的概率为,丙胜甲的概率为,乙胜丙的概率为,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为.
(1)求的值;
(2)设在该次对抗比赛中,丙得分为,求的分布列、数学期望和方差.
【题目】有5个匣子,每个匣子有一把钥匙,并且钥匙不能通用.如果随意在每一个匣内放入一把钥匙,然后把匣子全都锁上.现在允许砸开一个匣子,使得能相继用钥匙打开其余4个匣子,那么钥匙的放法有______种.
【题目】已知圆,设平面区域,若圆心,且圆与轴相切,则的最小值为__________,的最大值为__________.
【题目】成书于公元一世纪的我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,题目是:“今有池方一丈,点生其中央,出水一尺,引葭赶岸,适马岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈(10尺),有棵芦苇长在它的正中央,高出水面部分有1尺长,把芦苇拉向岸边,恰好碰到沿岸(池塘一边的中点),则水深为__________尺,芦苇长__________尺.
【题目】已知是两条异面直线,直线与都垂直,则下列说法正确的是( )
A. 若平面,则
B. 若平面,则,
C. 存在平面,使得,,
D. 存在平面,使得,,
【题目】在直角坐标系中,圆的参数方程为(为参数),圆与圆外切于原点,且两圆圆心的距离,以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)求圆和圆的极坐标方程;
(2)过点的直线,与圆异于点的交点分别为点,,与圆异于点的交点分别为点,,且,求四边形面积的最大值.