题目内容
【题目】已知:椭圆的离心率为,且,过左焦点作一条直线交椭圆于、两点,过线段的中点作的垂线交轴于点.
(1)求椭圆方程;
(2)当面积最大时,求直线的斜率.
【答案】(1)(2)
【解析】
(1)根据离心率为,且a+b=3,a2=b2+c2可求椭圆方程;
(2)设出直线AB方程,利用韦达定理求出及中点M坐标,从而可得直线MP方程,求出P点坐标,再利用点到直线距离公式写出面积,根据导数求最值.
(1)由已知条件可得,,化简解得a=2,b=1,c=
∴椭圆方程为;
(2)设,,与椭圆联立消去x,
得:,
,
,
又,
中点,所以,
令x=0,可得,
故得点,到的距离,
所以,
令,则,
构造函数,,
可得
即时取得最小值,
所以即时,面积最大.
当面积最大时,直线的斜率为.
【题目】近年来,随着国家综合国力的提升和科技的进步,截至年底,中国铁路运营里程达万千米,这个数字比年增长了倍;高铁运营里程突破万千米,占世界高铁运营里程的以上,居世界第一位.如表截取了年中国高铁密度的发展情况(单位:千米/万平方千米).
年份 | |||||
年份代码 | |||||
高铁密度 |
已知高铁密度与年份代码之间满足关系式(为大于的常数).
(1)根据所给数据,求关于的回归方程(精确到位);
(2)利用(1)的结论,预测到哪一年,高铁密度会超过千米/万平方千米.
参考公式:设具有线性相关系的两个变量的一组数据为,则回归方程的系数:,
参考数据:,,,,,.
【题目】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
购买金额(元) | ||||||
人数 | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.
不少于60元 | 少于60元 | 合计 | |
男 | 40 | ||
18 | |||
合计 |
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为(每次抽奖互不影响,且的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数(元)的分布列并求其数学期望.
附:参考公式和数据:,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |