【题目】已知函数.
(1)设是的反函数.当时,解不等式;
(2)若关于的方程的解集中恰好有一个元素,求实数的值;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.
【题目】如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角
(1)若问:观察者离墙多远时,视角最大?
(2)若当变化时,求的取值范围.
【题目】已知函数,其中是自然对数的底数,是函数的导数.
(1)若是上的单调函数,求的值;
(2)当时,求证:若,且,则.
【题目】已过抛物线:的焦点作直线交抛物线于,两点,以,两点为切点作抛物线的切线,两条直线交于点.
(1)当直线平行于轴时,求点的坐标;
(2)当时,求直线的方程.
【题目】数列是公比为正数的等比数列,,;数列前项和为,满足,.
(1)求,及数列,的通项公式;
(2)求.
【题目】已知四棱锥中,底面为矩形,平面平面,,点,分别是,的中点.
(1)求证:平面;
(2)若与平面所成角的余弦值等于,求的长.
【题目】正四面体中,在平面内,点在线段上,,是平面的垂线,在该四面体绕旋转的过程中,直线与所成角为,则的最小值是( )
A.B.C.D.
【题目】设函数,,其中,是自然对数的底数.
(1)设,当时,求的最小值;
(2)证明:当,时,总存在两条直线与曲线与都相切;
(3)当时,证明:.
【题目】已知等比数列的公比,且,是、的等差中项.
(1)求数列的通项公式;
(2)试比较与的大小,并说明理由;
(3)若数列满足,在每两个与之间都插入个2,使得数列变成了一个新的数列,试问:是否存在正整数,使得数列的前项和?如果存在,求出的值;如果不存在,说明理由.
【题目】已知椭圆的左、右焦点分别为、,离心率为,点是椭圆上的一个动点,且面积的最大值为.
(1)求椭圆的方程;
(2)过点作直线交椭圆于、两点,过点作直线的垂线交圆:于另一点.若的面积为3,求直线的斜率.