【题目】已知, 满足约束条件,若取得最大值的最优解不唯一,则实数的值为__________.
【答案】或
【解析】由题可知若取得最大值的最优解不唯一则必平行于可行域的某一边界,如图:要Z最大则直线与y轴的截距最大即可,当a<0时,则平行AC直线即可故a=-2,当a>0时,则直线平行AB即可,故a=1
点睛:线性规划为常考题型,解决此题务必要理解最优解个数为无数个时的条件是什么,然后根据几何关系求解即可
【题型】填空题【结束】16
【题目】《数书九章》三斜求积术:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约一,为实,一为从隅,开平方得积”.秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.以, , , 分别表示三角形的面积,大斜,中斜,小斜; , , 分别为对应的大斜,中斜,小斜上的高;则 .若在中, , ,根据上述公式,可以推出该三角形外接圆的半径为__________.
【题目】下列说法正确的是( )
A.设m为实数,若方程表示双曲线,则m>2.
B.“p∧q为真命题”是“p∨q为真命题”的充分不必要条件
C.命题“x∈R,使得x2+2x+3<0”的否定是:“x∈R,x2+2x+3>0”
D.命题“若x0为y=f(x)的极值点,则f’(x)=0”的逆命题是真命题
【题目】定义:对于任意,满足条件且(M是与n无关的常数)的无穷数列称为M数列.
(1)若等差数列的前项和为,且,判断数列是否是M数列,并说明理由;
(2)若各项为正数的等比数列的前项和为,且,证明:数列是M数列,并指出M的取值范围;
(3)设数列,问数列是否是M数列?请说明理由.
【题目】已知动点P到直线的距离与到点的距离之比为.
(1)求动点P的轨迹;
(2)直线与曲线交于不同的两点A,B(A,B在轴的上方):
①当A为椭圆与轴的正半轴的交点时,求直线的方程;
②对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
【题目】某公司要在一条笔直的道路边安装路灯,要求灯柱AB与底面垂直,灯杆BC与灯柱AB所在的平面与道路走向垂直,路灯C采用锥形灯罩,射出的管线与平面ABC部分截面如图中阴影所示,路宽AD=24米,设
(1)求灯柱AB的高h(用表示);
(2)此公司应该如何设置的值才能使制作路灯灯柱AB和灯杆BC所用材料的总长度最小?最小值为多少?
【题目】如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.
(1)求异面直线与所成的角;
(2)求证:平面.
【题目】已知等差数列的前项和为,等比数列的前项和为,且
(1)设,求数列的通项公式;
(2)在(1)的条件下,且,求满足的所有正整数;
(3)若存在正整数,且,试比较与的大小,并说明理由.
【题目】已知是关于的方程组的解.
(1)求证:;
(2)设分别为三边长,试判断的形状,并说明理由;
(3)设为不全相等的实数,试判断是“”的 条件,并证明.①充分非必要;②必要非充分;③充分且必要;④非充分非必要.
【题目】已知,函数
(1)解关于的不等式;
(2)若不等式对任意实数恒成立,求的取值范围.
【题目】已知抛物线的焦点为F,过焦点F的直线交抛物线于A,B两点,设AB的中点为M,A,B,M在准线上的射影分别为C,D,N.
(1)求直线FN与直线AB的夹角的大小;
(2)求证:点B,O,C三点共线.