题目内容
【题目】已知等差数列的前项和为,等比数列的前项和为,且
(1)设,求数列的通项公式;
(2)在(1)的条件下,且,求满足的所有正整数;
(3)若存在正整数,且,试比较与的大小,并说明理由.
【答案】(1)当d=0, 当,(2)(3) ,见解析
【解析】
(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,根据a3=b2,a4=b3,a1=b1=1建立关系求解an,bn的通项公式,可得数列{an+bn}的通项公式;
(2)利用等差数列和等比数列的前n项和公式建立关系,利用函数的极值思想,求解n、m的关系,可得答案.
(3)存在正整数m(m≥3),且am=bm>0,需对q=1或q>1进行讨论,利用一次函数与指数函数的图像特点,即可得结论.
(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,
∵a1=b1=1.
a3=b2,a4=b3,∴1+2d=q,1+3d=q2,
联立解得d=0,q=1;d,q.
∴d=0,q=1时,an=1,bn=1,an+bn=2.
d,q时,an=1(n﹣1),bn,an+bn.
(2)在(1)的条件下,且an≠an+1,∴d≠0,d,q,
Sn=n,Pm2.
n22,
解得:n或n.
满足Sn=Pm的所有正整数n、m为:,,,,
(3)存在正整数m(m≥3),且am=bm>0,
1+(m﹣1)d=qm﹣1>0.
1,1+d,1+2d,…,1+(m﹣1)d.
1,q,q2,…,qm﹣1.
若q=1,则(m﹣1)d=0,可得d=0.则Sm=m,Pm=m,此时Sm=Pm.
若q≠1,则d≠0,将{an}与{bn}分别视为关于x的函数,
若有am=bm则q>1.大致图像:
由一次函数与指数函数的图像特点可得:当1<n< m时,an>bn,
∴Sm﹣Pm>0.
∴存在正整数m(m≥3),且am=bm>0,Sm≥Pm.
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 (单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益 (单位:万元) | 2 | 3 | 2 | 7 |
由表中的数据显示, 与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.
【题目】高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 计,在2018年这一年内从 市到市乘坐高铁或飞机出行的成年人约为万人次.为了 解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):
满意度 | 老年人 | 中年人 | 青年人 | |||
乘坐高铁 | 乘坐飞机 | 乘坐高铁 | 乘坐飞机 | 乘坐高铁 | 乘坐飞机 | |
10分(满意) | 12 | 1 | 20 | 2 | 20 | 1 |
5分(一般) | 2 | 3 | 6 | 2 | 4 | 9 |
0分(不满意) | 1 | 0 | 6 | 3 | 4 | 4 |
(span>1)在样本中任取个,求这个出行人恰好不是青年人的概率;
(2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,求的分布列和数学期望;
(3)如果甲将要从市出发到市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.